PJM Generator Interconnection Request Queue AB1-006 Olive-Dequine 345 kV Feasibility Study Report

Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

General

The Interconnection Customer (IC) proposes to install a 200 MW (26 MW Capacity) wind generating facility on the American Electric Power (AEP) Transmission System. The proposed PJM Project #AB1-006 will connect to the existing Meadow Lake 345 kV substation. The proposed location of the generating facilities is located in White County, Indiana.

The requested in-service date is 12/15/2017.

The objective of this Feasibility Study is to determine budgetary cost estimates and approximate construction timelines for identified transmission facilities required to connect the proposed generating facilities to the AEP Transmission System. These reinforcements include the Attachment Facilities, Local Upgrades, and Network Upgrades required to maintain the reliability of the AEP Transmission System. Stability analysis is not included as part of this study.

Attachment Facilities

The one-line supplied shows creation of a four-terminal line, which is not acceptable to AEP.

Therefore, AEP recommends that AB1-006 interconnect utilizing one of several options:

- Add a new breaker facing the Meadow Lake station at the common connection point of the three projects; or,
- Provide a separate generator lead to connect to an open position at the Meadow Lake 345 kV substation.

Station Cost:

• No significant AEP work is required if a breaker facing Meadow Lake is installed at the customer end of the common generator lead.

Protection and Relay Cost:

• Feasibility Studies only include a very high level review of Protection and Control (P&C) requirements. A more thorough review will be conducted during the System Impact Study stage. However AEP Protection & Controls Engineering has indicated that a four-terminal line is not acceptable.

Network Impacts

The Queue Project AB1-006 was evaluated as a 200.0 MW (Capacity 26.0 MW) injection at the Meadow Lake 345 kV substation in the AEP area. Project AB1-006 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AB1-006 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Analysis - 2019

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

	AB1-006 Multiple Facility Contingency – Table 1A													
		Contingency	Affected	Facility	B	us	Cir.	PF	Load	ling	Ra	ting	MW	\mathbf{FG}
#	Type	Name	Area	Description	From	To	CII.	11	Initial	Final	Type	MVA	Con.	App.
1	LFFB	6189_C2_05HANG R 765-D1	AEP - OVEC	05JEFRSO- 06CLIFTY 345 kV line	242865	248000	Z1	DC	89.41	90.74	ER	2354	27.28	1

Please refer to Appendix 1 for a table containing the generators having contribution to this flowgate.

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

	AB1-006 Contribution to Previously Identified Overloads – Table 2A													
		Contingency	Affected Facility		В	Bus		PF	Loading		Rating		MW	\mathbf{FG}
#	Type	Name	Area	Description	From	To	CII.	rr	Initial	Final	Type	MVA	Con.	App.
1	LFFB	8648_C2_05JEFRSO 765-B1	AEP - MISO NIPS	05MEADOW- 17REYNOLDS 345 kV line	243878	255205	1	DC	138.11	144.27	ER	1918	118.1	2
2	N-1	363_B2_TOR1682	AEP - MISO NIPS	05MEADOW- 17REYNOLDS 345 kV line	243878	255205	1	DC	121.37	122.46	NR	1409	15.45	
3	LFFB	7444_C2_05DUMONT 765-A2	MISO NIPS - AEP	17HIPLE- 05COLNGW 345 kV line	255105	243214	1	DC	103.25	103.3	ER	1409	16.16	3

	AB1-006 Contribution to Previously Identified Overloads – Table 2A													
		Contingency	Affected	l Facility Bus		Cir.	PF	Loading			ting	MW	\mathbf{FG}	
#	Type	Name	Area	Description	From	To	cii.	11	Initial	Final	Type	MVA	Con.	App.
4	LFFB	2978_C2_05DUMONT 765-B_A	AEP - AEP	X2-052 TAP- 05DUMONT 345 kV line	909144	243219	2	DC	111.51	112.22	ER	1409	22.27	4
5	LFFB	112-65-BT4-5	AEP - AEP	X2-052 TAP- 05DUMONT 345 kV line	909144	243219	2	DC	101.04	101.6	ER	1409	17.72	
6	LFFB	112-65-BT3-4	AEP - AEP	X2-052 TAP- 05DUMONT 345 kV line	909144	243219	2	DC	101.03	101.59	ER	1409	17.72	
7	N/A	'8808_B2'	AEP - MISO NIPS	05MEADOW- 17REYNOLDS 345 kV line	243878	255205		DC	101.11	102.36	Norm	1409	17.64	

Affected System Analysis & Mitigation

To be determined in the System Impact Study

Delivery of Energy Portion of Interconnection Request

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Only the most severely overloaded conditions are listed. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed, which will study all overload conditions associated with the overloaded element(s) identified.

		AB1-006	Delivery	of Energy Porti	on of In	terconne	ection	Requ	est – Ta	ble 3A			
		Contingency	Affected	Facility	В	us	Cir.	PF	Loa	ding	Ra	ting	MW
#	Type	Name	Area	Description	From	To	CII.	11	Initial	Final	Type	MVA	Con.
1	N-1	363_B2_TOR1682	AEP - MISO DEM	05EUGENE- 08CAYSUB 345 kV line	243221	249504	1	DC	92.17	92.7	NR	1374	15.97
2	N-1	8695_B2	AEP - AEP	05MEADOW- 05OLIVE 345 kV line	243878	243229	1	DC	118.78	125.49	NR	971	65.21
3	N-1	363_B2_TOR1682	AEP - MISO NIPS	05MEADOW- 17REYNOLDS 345 kV line	243878	255205	1	DC	181.84	190.27	NR	1409	118.85
4	N-1	7442_B2_TOR200545	MISO NIPS - AEP	17HIPLE- 05COLNGW 345 kV line	255105	243214	1	DC	102.08	102.12	NR	1409	15.81
5	N-1	695_B2	AEP - AEP	X2-052 TAP- 05DUMONT 345 kV line	909144	243219	2	DC	100.88	101.45	NR	1409	17.72

Light Load Analysis - 2019

Light Load Studies to be conducted during later study phases (as required by PJM Manual 14B).

System Reinforcements

Short Circuit

(Summary form of Cost allocation for breakers will be inserted here if any)

None

Stability and Reactive Power Requirement

(Results of the dynamic studies should be inserted here)

To be determined

New System Reinforcements

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

#	Contingency Name	Contingency Description	Facility Description	Limiting element	Mitigation and Cost	Schedule
1	LFFB	6189_C2_05HANG R 765-D1	05JEFRSO- 06CLIFTY 345 kV line	To Be determined	Reinforcement: A Sag Study will be required on the 0.75 mile section of line to mitigate the overload on the Jefferson - Clifty Creek 345 kV line. Depending on the sag study results, cost for this upgrade is expected to be between \$4,000 (no remediation required just sag study) and \$2.0 million (complete line rebuild required). This is an AEP-OVEC tie line therefore; PJM is going to have to coordinate this upgrade with OVEC as well to make sure that their equipment will not set a limit lower than what is specified here.	Depending on the sag study results, cost for this upgrade is expected to be between \$4,000 (no remediation required just sag study) and \$2.0 million (complete line rebuild required).

Contribution to Previously Identified System Reinforcements

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study) (Summary form of Cost allocation for transmission lines and transformers will be inserted here if any)

#	Contingency Name	Contingency Description	Facility Description	Limiting element	Mitigation and Cost	Schedule
1	CONTINGE NCY '8648_C2_05 JEFRSO 765-B'	OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 / 243208 05JEFRSO 765 243209 05ROCKPT 765 1 OPEN BRANCH FROM BUS 243208 TO BUS 242865 CKT 1 / 243208 05JEFRSO 765 242865 05JEFRSO 345 1 OPEN BRANCH FROM BUS 242865 TO BUS 248000 CKT Z1 / 242865 05JEFRSO 345 248000 06CLIFTY 345 Z1 END	(AEP - MISO NIPS) The 05MEADOW-17REYNOLDS 345 kV line (from bus 243878 to bus 255205 ckt 1) loads from 138.11% to 144.27% (DC power flow) of its emergency rating (1918 MVA) for the line fault with failed breaker contingency outage of '8648_C2_05JEFRSO 765-B1'. This project contributes approximately 118.1 MW to the thermal violation.	Based on our current record, limiting element is: Three-954 ACSR Cardinal conductor	AEP is in the process of rebuilding the Meadow Lake – Reynolds 345 kV line. The rebuild is expected to be completed by mid-2018 provided there are no outage cancelations.	Provided there are no outage cancelations, the rebuild is expected to be completed by mid-2018. The rebuild cannot be advanced.
2	'363_B2_TO R1682'	CONTINGENCY '363_B2_TOR1682' OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 / 243208 05JEFRSO 765 243209 05ROCKPT 765 1 END	(AEP - MISO NIPS) The 05MEADOW-17REYNOLDS 345 kV line (from bus 243878 to bus 255205 ckt 1) loads from 121.37% to 122.46% (DC power flow) of its normal rating (1409 MVA) for the single line contingency outage of '363_B2_TOR1682'. This project contributes approximately 15.45 MW to the thermal violation.	Based on our current record, limiting element is: Meadow Lake Wavetrap (3000A).	AEP is in the process of rebuilding the Meadow Lake – Reynolds 345 kV line. The rebuild is expected to be completed by mid-2018 provided there are no outage cancelations.	Provided there are no outage cancelations, the rebuild is expected to be completed by mid-2018. The rebuild cannot be advanced.
3	'7444_C2_05 DUMONT 765-A2'	CONTINGENCY '7444_C2_05DUMONT 765-A2' OPEN BRANCH FROM BUS 243206 TO BUS 246999 CKT 1 / 243206 05DUMONT 765 246999 05SORENS 765 1 OPEN BRANCH FROM BUS 243206 TO BUS 243219 CKT 2 / 243206 05DUMONT 765 243219 05DUMONT 345 2 OPEN BRANCH FROM BUS 243219 TO BUS 909144 CKT 2 / 243219 05DUMONT 345 909144 X2-052 TAP 345 2 END	(MISO NIPS - AEP) The 17HIPLE-05COLNGW 345 kV line (from bus 255105 to bus 243214 ckt 1) loads from 103.25% to 103.3% (DC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '7444_C2_05DUMONT 765-A2'. This project contributes approximately 16.17 MW to the thermal violation.	ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1	A Sag Study will be required on the 33.46 mile section of line to mitigate the overload on the Collingwood - Hiple 345 kV line. Depending on the sag study results, cost for this upgrade is expected to be between \$133,840 (no remediation required just sag study) and \$67 million (complete line rebuild required). This is an AEP-NIPSCO tie line therefore, PJM is going to have to coordinate this upgrade with NIPSCO as well to make sure that their equipment will not set a limit lower than what is specified here.	(1) Sag Study: 6 to 12 months. (2) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 36 to 48 months after signing an interconnection agreement.

#	Contingency Name	Contingency Description	Facility Description	Limiting element	Mitigation and Cost	Schedule
4	'2978_C2_05 DUMONT 765-B_A'	CONTINGENCY '2978_C2_05DUMONT 765-B_A' OPEN BRANCH FROM BUS 243206 TO BUS 907040 CKT 1	(AEP - AEP) The X2-052 TAP-05DUMONT 345 kV line (from bus 909144 to bus 243219 ckt 2) loads from 111.51% to 112.22% (DC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '2978_C2_05DUMONT 765-B_A'. This project contributes approximately 22.27 MW to the thermal violation.	The ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1	A sag check will be required for the ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1 to determine if the line section can be operated above its emergency rating of 1409 MVA. The result could prove that no additional upgrades are necessary, that some upgrades on the circuit are necessary, or that the entire 14 mile section of line would need to be rebuilt. Estimated Cost for the Sag Study: \$56,000. If deemed necessary to rebuild section of line, Estimated Cost: \$28,000,000.	(1) Sag Study: 6 to 12 months. (2) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 36 to 48 months after signing an interconnection agreement.
5	CONTINGE NCY '112- 65-BT4-5'	TRIP BRANCH FROM BUS 270644 TO BUS 243206 CKT 1 / WILTO; 765 05DUMONT 765 TRIP BRANCH FROM BUS 275233 TO BUS 270644 CKT 1 / WILTO;4M 345 WILTO; 765 TRIP BRANCH FROM BUS 275233 TO BUS 270927 CKT 1 / WILTO;4M 345 WILTO; R 345 TRIP BRANCH FROM BUS 275233 TO BUS 275333 CKT 1 / WILTO;4M 345 WILTO;4C 33 END	(AEP - AEP) The X2-052 TAP-05DUMONT 345 kV line (from bus 909144 to bus 243219 ckt 2) loads from 101.04% to 101.6% (DC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '112-65-BT4-5_'. This project contributes approximately 17.72 MW to the thermal violation.	The ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1	A sag check will be required for the ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1 to determine if the line section can be operated above its emergency rating of 1409 MVA. The result could prove that no additional upgrades are necessary, that some upgrades on the circuit are necessary, or that the entire 14 mile section of line would need to be rebuilt. Estimated Cost for the Sag Study: \$56,000. If deemed necessary to rebuild section of line, Estimated Cost: \$28,000,000.	(1) Sag Study: 6 to 12 months. (2) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 36 to 48 months after signing an interconnection agreement.

8

#	Contingency Name	Contingency Description	Facility Description	Limiting element	Mitigation and Cost	Schedule
6	CONTINGE NCY '112- 65-BT3-4'	TRIP BRANCH FROM BUS 270644 TO BUS 243206 CKT 1 / WILTO; 765 05DUMONT 765 TRIP BRANCH FROM BUS 275232 TO BUS 270644 CKT 1 / WILTO;3M 345 WILTO; 765 TRIP BRANCH FROM BUS 275232 TO BUS 270926 CKT 1 / WILTO;3M 345 WILTO; B 345 TRIP BRANCH FROM BUS 275232 TO BUS 275332 CKT 1 / WILTO;3M 345 WILTO;3C 33 END	(AEP - AEP) The X2-052 TAP-05DUMONT 345 kV line (from bus 909144 to bus 243219 ckt 2) loads from 101.03% to 101.59% (DC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '112-65-BT3-4'. This project contributes approximately 17.72 MW to the thermal violation.	The ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1	A sag check will be required for the ACSR ~ 954 ~ 45/7 ~ RAIL Conductor Section 1 to determine if the line section can be operated above its emergency rating of 1409 MVA. The result could prove that no additional upgrades are necessary, that some upgrades on the circuit are necessary, or that the entire 14 mile section of line would need to be rebuilt. Estimated Cost for the Sag Study: \$56,000. If deemed necessary to rebuild section of line, Estimated Cost: \$28,000,000.	(1) Sag Study: 6 to 12 months. (2) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 36 to 48 months after signing an interconnection agreement.
7	'8808_B2'	CONTINGENCY '8808_B2' OPEN BRANCH FROM BUS 243229 TO BUS 243878 CKT 1 / 243229 050LIVE 345 243878 05MEADOW 345 1 END	(AEP - MISO NIPS) The 05MEADOW-17REYNOLDS 345 kV line (from bus 243878 to bus 255205 ckt 1) loads from 101.11% to 102.36% (DC power flow) of its normal rating (1409 MVA) for the single line contingency outage of '8808_B2'. This project contributes approximately 17.64 MW to the thermal violation.	Based on our current record, limiting element is: Meadow Lake Wavetrap (3000A).	AEP is in the process of rebuilding the Meadow Lake – Reynolds 345 kV line. The rebuild is expected to be completed by mid-2018 provided there are no outage cancelations.	Provided there are no outage cancelations, the rebuild is expected to be completed by mid-2018. The rebuild cannot be advanced.

Conclusion

Based upon the results of this Feasibility Study, the construction of the 200 MW wind generating facility of INTERCONNECTION CUSTOMER (PJM Project #AB1-006) will require the following additional interconnection charges. This plan of service will interconnect the proposed wind generating facility in a manner that will provide operational reliability and flexibility to both the AEP system and the INTERCONNECTION CUSTOMER wind generating facility.

Estimated Direct Connection Cost: To be determined in System Impact Study

• AEP Protection and Control (P&C) has rejected the IC's proposed direct connection. Costs will be estimated once the IC elects either Option 1 or Option 2 as proposed by AEP in the "Attachment Facilities" section of this report.

Estimated Local/Network Upgrade Cost: \$189,840 to \$95,000,000*

• The \$189,840 is the estimated cost for the sag studies. The \$95M cost is the worst case scenario which assumes that the sag study results require all lines to be reconductored.

The estimates are preliminary in nature, as they were determined without the benefit of detailed engineering studies. The cost of remediation for the sag study and line reconductoring is not included in this estimate. Final estimates will require an on-site review and coordination to determine final construction requirements.

Additional Interconnection Customer Responsibilities:

- 1. An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.
- 3. The Interconnection Customer seeking to interconnect a wind generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per item 5.iv. of Schedule H to the Interconnection Service Agreement.

Appendices

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact.

It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

(AEP - OVEC) The 05JEFRSO-06CLIFTY 345 kV line (from bus 242865 to bus 248000 ckt Z1) loads from 89.41% to 90.74% (**DC power flow**) of its emergency rating (2354 MVA) for the line fault with failed breaker contingency outage of '6189_C2_05HANG R 765-D1'. This project contributes approximately 27.28 MW to the thermal violation.

CONTINGENCY '6189_C2_05HANG R 765-D1'

OPEN BRANCH FROM BUS 242921 TO BUS 242924 CKT 1 / 242921

05CORNU 765 242924 05HANG R 765 1

OPEN BRANCH FROM BUS 242924 TO BUS 243208 CKT 1 / 242924

05HANG R 765 243208 05JEFRSO 765 1

END

Bus Number	Bus Name	Full Contribution
243441	05CKG2	9.72
243859	05FR-11G C	0.22
247900	05FR-11G E	10.35
243862	05FR-12G C	0.22
247901	05FR-12G E	10.18
243864	05FR-21G C	0.23
247902	05FR-21G E	10.88
243866	05FR-22G C	0.22
247903	05FR-22G E	10.42
243870	05FR-3G C	0.45
247904	05FR-3G E	21.1
243873	05FR-4G C	0.35
247905	05FR-4G E	15.86
246909	05MDL-1G C	0.46
247906	05MDL-1G E	21.78
246910	05MDL-2G C	0.23
247907	05MDL-2G E	10.8
246976	05MDL-3G C	0.23
247912	05MDL-3G E	11.29
246979	05MDL-4G C	0.46
247913	05MDL-4G E	10.77
243442	05RKG1	35.61
243443	05RKG2	35.07
927171	G798 C	0.92
884780	S-058 C	36.62
884782	S-058 C1	36.62
884781	S-058 E	120.74
884783	S-058 E1	120.74
890570	U3-026 C1	25.74
890571	U3-026 C2	25.74

247523	U4-039 C	15.56
247927	U4-039 E	104.13
907041	X1-020 C	30.61
907042	X1-020 E	204.82
909145	X2-052	70.58
900404	X3-028 C	254.06
900405	X3-028 E	338.74
915151	Y3-038	11.43
915662	Y3-099 E	0.25
915672	Y3-100 E	0.25
LTF	Z1-043	25.25
916091	Z1-051 C	8.92
916092	Z1-051 E	2.04
916182	Z1-065 E	0.67
LTF	Z1-070	104.82
916272	Z1-080 E	0.52
LTF	Z1-112	8.46
LTF	AA1-001	4.92
LTF	AA1-071	5.64
918802	AA1-099 E	0.35
919591	AA2-035 C OP	106.65
919592	<i>AA2-035 E OP</i>	8.27
LTF	AA2-038	29.07
930041	AB1-006 C	3.55
930042	AB1-006 E	23.73
930391	AB1-080	4.18
930461	AB1-087 C OP	93.47
930462	<i>AB1-087 E OP</i>	4.25
930471	AB1-088 C OP	93.47
930472	AB1-088 E OP	4.25

(AEP - MISO NIPS) The 05MEADOW-17REYNOLDS 345 kV line (from bus 243878 to bus 255205 ckt 1) loads from 138.11% to 144.27% (**DC power flow**) of its emergency rating (1918 MVA) for the line fault with failed breaker contingency outage of '8648_C2_05JEFRSO 765-B1'. This project contributes approximately 118.1 MW to the thermal violation.

CONTINGENCY '8648_C2_05JEFRSO 765-B1'

OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 / 243208
05JEFRSO 765 243209 05ROCKPT 765 1

OPEN BRANCH FROM BUS 243208 TO BUS 242865 CKT 1 / 243208
05JEFRSO 765 242865 05JEFRSO 345 1

OPEN BRANCH FROM BUS 242865 TO BUS 248000 CKT Z1 / 242865
05JEFRSO 345 248000 06CLIFTY 345 Z1

END

Bus Number	Bus Name	Full Contribution
243859	05FR-11G C	0.82
247900	05FR-11G E	38.44
243862	05FR-12G C	0.8
247901	05FR-12G E	37.8
243864	05FR-21G C	0.86
247902	05FR-21G E	40.4
243866	05FR-22G C	0.82
247903	05FR-22G E	38.69
243870	05FR-3G C	1.66
247904	05FR-3G E	78.35
243873	05FR-4G C	1.29
247905	05FR-4G E	58.91
246909	05MDL-1G C	2.01
247906	05MDL-1G E	94.3
246910	05MDL-2G C	1.
247907	05MDL-2G E	46.77
246976	05MDL-3G C	1.
247912	05MDL-3G E	48.89
246979	05MDL-4G C	2.01
247913	05MDL-4G E	46.65
243442	05RKG1	18.61
243443	05RKG2	18.33
927331	J196 C	1.1
927332	J196 E	4.41
927621	J333	17.94
927631	J334	20.74
900404	X3-028 C	249.09

900405	X3-028 E	332.12
915151	Y3-038	5.98
LTF	Z1-007	5.09
LTF	Z1-029	3.12
LTF	Z1-070	71.53
LTF	AA1-001	5.14
930041	AB1-006 C	15.35
930042	AB1-006 E	102.75
LTF	AB1-023	6.18
930461	<i>AB1-087 C OP</i>	91.33
930462	<i>AB1-087 E OP</i>	4.15
930471	AB1-088 C OP	91.33
930472	AB1-088 E OP	4.15

(MISO NIPS - AEP) The 17HIPLE-05COLNGW 345 kV line (from bus 255105 to bus 243214 ckt 1) loads from 103.25% to 103.3% (**DC power flow**) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '7444_C2_05DUMONT 765-A2'. This project contributes approximately 16.16 MW to the thermal violation.

CONTINGENCY '7444_C2_05DUMONT 765-A2'	
OPEN BRANCH FROM BUS 243206 TO BUS 246999 CKT 1	/ 243206
05DUMONT 765 246999 05SORENS 765 1	
OPEN BRANCH FROM BUS 243206 TO BUS 243219 CKT 2	/ 243206
05DUMONT 765 243219 05DUMONT 345 2	
OPEN BRANCH FROM BUS 243219 TO BUS 909144 CKT 2	/ 243219
05DUMONT 345 909144 X2-052 TAP 345 2	
END	

Bus Number	Bus Name	Full Contribution
247900	05FR-11G E	5.75
247901	05FR-12G E	5.65
247902	05FR-21G E	6.04
247903	05FR-22G E	5.78
247904	05FR-3G E	11.72
247905	05FR-4G E	8.81
247906	05MDL-1G E	12.91
247907	05MDL-2G E	6.4
247912	05MDL-3G E	6.69
247913	05MDL-4G E	6.38
275146	BOONE HTG;1E	5.54
274883	BOONE HTG;1U	1.39
275145	BOONE HTG;2E	5.54
274884	BOONE HTG;2U	1.39
246431	BUCHANAN	0.36
274890	CAYUG;1U E	7.98
274891	CAYUG;2U E	7.98
274859	EASYR;U1 E	6.47
274860	EASYR;U2 E	6.47
246397	ELKHARTH	0.47
290051	GSG-6; E	6.08
275149	KEMPTON ;1E	10.81
274881	KEMPTON ;1U	2.7
290108	LEEDK;1U E	14.03
274850	MENDOTA H;RU	3.5
275148	MILKS GRV;1E	10.81
274880	MILKS GRV;1U	2.7
246536	MOTTVILL	0.2

202061	N. O.1.5. E.	0.06
293061	N-015 E	8.86
293644	O-022 E1	5.97
293645	O-022 E2	11.58
293715	O-029 E	5.33
293716	O-029 E	2.92
293717	O-029 E	2.69
290021	O-050 E	11.25
294392	P-010 E	11.25
294763	P-046 E	5.47
274830	PWR VTREC;1U	3.52
274831	PWR VTREC;2U	3.52
274722	S-055 E	6.44
884780	S-058 C	25.18
884782	S-058 C1	25.18
884781	S-058 E	83.01
884783	S-058 E1	83.01
295111	SUBLETTE E	1.58
890570	U3-026 C1	17.69
890571	U3-026 C2	17.69
900371	V4-046	1.38
900381	V4-047	1.38
900391	V4-048	1.54
900401	V4-049	1.54
903432	W3-046	3.71
903434	W3-046	3.44
903435	W3-046	3.71
903436	W3-046	3.44
274873	WALNR;1U	1.41
294500	WALNR;1U E	5.64
274874	WALNR;2U	1.41
294502	WALNR;2U E	5.64
295109	WESTBROOK E	3.25
909145	X2-052	57.74
910542	X3-005 E	0.44
914321	Y2-103	25.76
915011	Y3-013 1	2.15
915021	Y3-013 2	2.15
915031	Y3-013 3	2.15
915041	Y3-023	0.04
915601	Y3-088	1.48
915611	Y3-089	1.48
915621	Y3-090	1.48
915631	Y3-091	1.48
LTF	Z1-043	17.33
916091	Z1-051 C	6.1

916092	Z1-051 E	1.4
LTF	Z1-070	58.08
916221	Z1-073	0.42
916502	Z1-106 E1	0.72
916504	Z1-106 E2	0.72
916512	Z1-107 E	1.49
916522	Z1-108 E	1.43
LTF	Z1-112	6.07
916651	Z1-127 1	1.02
916652	Z1-127 2	0.51
917451	Z2-081	0.94
917531	Z2-090 C	0.03
917532	Z2-090 E	0.32
917701	Z2-113 C	0.19
917702	Z2-113 E	0.19
917711	Z2-114 C	0.22
917712	Z2-114 E	0.22
917731	Z2-114 E Z2-116 C	0.12
917732	Z2-116 E	0.12
918051	AA1-018 C OP	1.42
918051	AA1-018 E OP	9.47
918052	AA1-040 1	0.73
918261	AA1-040 2	0.73
LTF	AA1-040 2 AA1-071	4.04
918611	AA1-078	1.55
918972	AA1-116 E	1.54
918982	AA1-110 E AA1-117 E	1.54
919071	AA1-117 E AA1-129	1.96
919071	AA1-129 AA1-146	10.45
919221	AA2-030 C	10.45
919581	AA2-030 E	2.2
919582	AA2-035 C OP	73.32
919591	AA2-035 E OP	5.68
LTF	AA2-033 E OF AA2-038	20.91
919811	AA2-067 OP	0.7
919811	AA2-107 E	1.41
920112	AA2-10/ E AA2-116	108.27
920211	AA2-110 AA2-123 E	1.41
920272	AB1-006 C	2.1
930041	AB1-006 E	14.06
930381	AB1-000 E AB1-079	0.81
930301	AB1-0/9 AB1-080	3.42
930391	AB1-085 E	1.45
	AB1-089 C	38.68
930481		1.76
930402	AB1-089 E	1./0

930491	AB1-090 C	38.68
930492	AB1-090 E	1.76
930501	AB1-091 C OP	42.58
930502	AB1-091 E OP	1.94
930751	AB1-121	132.56
930761	AB1-122 1	26.26
930762	AB1-122 2	26.26
930763	AB1-122 3	29.37
930852	AB1-131 E	0.45
930972	AB1-146 E	0.14
931201	AB1-170 C OP	2.7
931202	AB1-170 E OP	16.3
931221	AB1-172	0.46

(AEP - AEP) The X2-052 TAP-05DUMONT 345 kV line (from bus 909144 to bus 243219 ckt 2) loads from 111.51% to 112.22% (**DC power flow**) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of '2978_C2_05DUMONT 765-B_A'. This project contributes approximately 22.27 MW to the thermal violation.

CONTINGENCY '2978_C2_05DUMONT 765-B_A'

OPEN BRANCH FROM BUS 243206 TO BUS 907040 CKT 1 / 243206
05DUMONT 765 907040 X1-020 TAP 765 1

OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 1 / 243206
05DUMONT 765 270644 WILTON ; 765 1

END

Bus Number	Bus Name	Full Contribution
247900	05FR-11G E	7.67
247901	05FR-12G E	7.55
247902	05FR-21G E	8.07
247903	05FR-22G E	7.72
247904	05FR-3G E	15.64
247905	05FR-4G E	11.76
247906	05MDL-1G E	17.78
247907	05MDL-2G E	8.82
247912	05MDL-3G E	9.22
247913	05MDL-4G E	8.8
274832	ANNAWAN ; 1U	7.27
275146	BOONE HTG;1E	6.06
274883	BOONE HTG;1U	1.51
275145	BOONE HTG;2E	6.06
274884	BOONE HTG;2U	1.51
294401	BSHIL;1U E	5.75
294410	BSHIL;2U E	5.75
274890	CAYUG;1U E	8.61
274891	CAYUG;2U E	8.61
274849	CRESCENT ;1U	3.95
274859	EASYR;U1 E	7.09
274860	EASYR;U2 E	7.09
290051	GSG-6; E	6.65
275149	KEMPTON ;1E	11.34
274881	KEMPTON ;1U	2.84
990901	L-005 E	8.52
290108	LEEDK;1U E	15.34
274850	MENDOTA H;RU	3.82
275148	MILKS GRV;1E	11.34

274880	MILKS GRV;1U	2.84
293061	N-015 E	9.77
293516	O-009 E1	5.98
293517	O-009 E2	3.04
293518	O-009 E3	3.34
293644	O-022 E1	6.38
293645	O-022 E2	12.39
293715	O-029 E	6.39
293716	O-029 E	3.5
293717	O-029 E	3.22
293771	O-035 E	4.3
290021	O-050 E	12.3
294392	P-010 E	12.4
294763	P-046 E	5.99
274830	PWR VTREC;1U	3.85
274831	PWR VTREC;2U	3.85
274722	S-055 E	7.03
884780	S-058 C	27.48
884782	S-058 C1	27.48
884781	S-058 E	90.61
884783	S-058 E1	90.61
295111	SUBLETTE E	1.73
890570	U3-026 C1	19.32
890571	U3-026 C2	19.32
274814	UNIV PK N;0U	0.42
274805	UNIV PK N;1U	0.42
274806	UNIV PK N;2U	0.42
274807	UNIV PK N;3U	0.42
274808	UNIV PK N;4U	0.42
274809	UNIV PK N;5U	0.42
274810	UNIV PK N;6U	0.42
274811	UNIV PK N;7U	0.42
274812	UNIV PK N;8U	0.42
274813	UNIV PK N;9U	0.42
274815	UNIV PK N;XU	0.42
274816	UNIV PK N;YU	0.42
900371	V4-046	1.51
900381	V4-047	1.51
900391	V4-048	1.71
900401	V4-049	1.71
903432	W3-046	4.07
903434	W3-046	3.77
903435	W3-046	4.07
903436	W3-046	3.77
274873	WALNR;1U	1.55

294500	WALNR;1U E	6.18
274874	WALNR;2U	1.55
294502	WALNR; 2U E	6.18
295109	WESTBROOK E	3.56
909145	X2-052	380.25
910542	X3-005 E	0.41
914321	Y2-103	28.11
915011	Y3-013 1	2.34
915021	Y3-013 2	2.34
915031	Y3-013 3	2.34
915601	Y3-088	1.61
915611	Y3-089	1.61
915621	Y3-090	1.61
915631	Y3-091	1.61
LTF	Z1-043	19.06
LTF	Z1-070	64.64
916211	Z1-072	0.73
916221	Z1-073	0.46
916502	Z1-106 E1	0.79
916504	Z1-106 E2	0.79
916512	Z1-107 E	1.63
916522	Z1-108 E	1.56
LTF	Z1-112	6.71
916651	Z1-127 1	1.04
916652	Z1-127 2	0.61
917451	Z2-081	1.04
917531	Z2-090 C	0.03
917532	Z2-090 E	0.35
917711	Z2-114 C	0.4
917712	Z2-114 E	0.4
918051	AA1-018 C OP	1.58
918052	AA1-018 E OP	10.57
918251	AA1-040 1	0.8
918261	AA1-040 2	0.8
LTF	AA1-071	4.47
918611	AA1-078	2.38
918972	AA1-116 E	1.62
918982	AA1-117 E	1.62
919071	AA1-129	2.14
919221	AA1-146	11.46
919581	AA2-030 C	11.46
919582	AA2-030 E	2.41
919591	AA2-035 C OP	80.04
919592	AA2-035 E OP	6.2
LTF	AA2-038	22.9

919621	AA2-039 C	1.4
919622	AA2-039 E	9.37
919811	AA2-067 OP	0.76
920112	AA2-107 E	1.54
920272	AA2-123 E	1.54
930041	AB1-006 C	2.89
930042	AB1-006 E	19.37
930381	AB1-079	0.88
930391	AB1-080	22.53
930442	AB1-085 E	1.58
930481	AB1-089 C	42.27
930482	AB1-089 E	1.92
930491	AB1-090 C	42.27
930492	AB1-090 E	1.92
930501	AB1-091 C OP	44.34
930502	AB1-091 E OP	2.02
930751	AB1-121	145.05
930761	AB1-122 1	28.71
930762	AB1-122 2	28.71
930763	AB1-122 3	32.1
930852	AB1-131 E	0.49
930972	AB1-146 E	0.15
931201	AB1-170 C OP	2.99
931202	AB1-170 E OP	18.05
931221	AB1-172	0.51