Generation Interconnection Feasibility Study Report

For

PJM Generation Interconnection Request Queue Position AD1-043

Makahoy 138kV Substation

Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

General

The Interconnection Customer (IC) proposes to install PJM Project #AD1-043, a 120.0 MW (45.6 MW Capacity) solar generating facility in Madison County, Indiana. The primary point of interconnection is to AEP's Makahoy 138kV Substation (see Figure 1). The secondary point of interconnection is to AEP's Strawton - Aladdin 138kV section of the Strawton - Arnold Hogan 138 kV circuit (see Figure 3).

The requested in backfeed date is June 30, 2020.

The requested in service date is September 30, 2020.

Attachment Facilities

Primary Point of Interconnection (Makahoy 138kV Substation)

To accommodate the interconnection on the Makahoy Substation 138kV, the installation of a new 138 kV circuit breaker will be required (see Figure 1). Installation of associated protection and control equipment, 138 kV line risers, SCADA, and 138 kV revenue metering will also be required. AEP reserves the right to specify the final acceptable configuration considering design practices, future expansion, and compliance requirements.

New Switching Station Work:

- Install one (1) 138 kV circuit breaker at Makahoy 138 kV substation. Installation of associated protection and control equipment, 138 kV line risers, SCADA, and 138 kV revenue metering will also be required (see Figure 1).
 - Estimated Station Cost: \$1,000,000

Non-Direct Connection Cost Estimate

The total preliminary cost estimate for Non-Direct Connection work is given in the following tables below.

For AEP building Direct Connection cost estimates:

Description	Total Cost
138 kV Revenue Metering	\$250,000
Upgrade line protection and controls at the Makahoy 138 kV substation.	\$250,000
Total	\$500,000

Table 1

Secondary Point of Interconnection (Strawton - Aladdin 138kV)

To accommodate the interconnection on the Strawton - Aladdin 138kV section of the Strawton - Arnold Hogan 138 kV circuit, a new three (3) circuit breaker 138 kV switching station physically configured in a breaker and half bus arrangement but operated as a ring-bus will be constructed (see Figure 3). Installation of associated protection and control equipment, 138 kV line risers, SCADA, and 138 kV revenue metering will also be required. AEP reserves the right to specify the final acceptable configuration considering design practices, future expansion, and compliance requirements.

Interconnection Customer Requirements

It is understood that the IC's Solar Development North America is responsible for all costs associated with this interconnection. The cost of IC's generating plant and the costs for the line connecting the generating plant to the new 138 kV switching station are not included in this report; these are assumed to be IC's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for American Electric Power to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

Requirement from the PJM Open Access Transmission Tariff:

- 1. An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.

Revenue Metering and SCADA Requirements

PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Sections 24.1 and 24.2.

AEP Requirements

The Interconnection Customer will be required to comply with all AEP Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "Requirements for Connection of New Facilities or Changes to Existing Facilities Connected to the AEP Transmission System" document located at the following link:

 $\underline{http://www.pjm.com/\sim/media/planning/plan-standards/private-aep/aep-interconnection-requirements.ashx}$

Option 1

Network Impacts

The Queue Project AD1-043 was evaluated as a 120.0 MW (Capacity 45.6 MW) injection at Makahoy 138kV substation in the AEP area. Project AD1-043 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AD1-043 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Analysis – 2021

Contingency Descriptions

The following contingencies resulted in overloads:

Contingency Name	Description
Contingency Name	CONTINGENCY 'AEP_P1-2_#2811'
	OPEN BRANCH FROM BUS 243233 TO BUS 248001 CKT Z1 /243233 05TANNER 345 248001 06DEARB1 345 Z1
AED D1 2 #2011	OPEN BRANCH FROM BUS 243233 TO BUS 249565 CKT 1 / 243233 05TANNER 345 249565 08EBEND 345 1
AEP_P1-2_#2811	OPEN BRANCH FROM BUS 248000 TO BUS 248001 CKT 1 / 248000 06CLIFTY 345 248001 06DEARB1 345 1
	OPEN BRANCH FROM BUS 248001 TO BUS 248013 CKT 1 / 248001 06DEARB1 345 248013 06PIERCE 345 1
	END
	CONTINGENCY 'AEP_P1-2_#673-A'
AEP_P1-2_#673-A	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 / 243218 05DESOTO 345 923880 AB2-028 TAP 345 1
	END
	CONTINGENCY 'AEP_P1-2_#6964'
AEP_P1-2_#6964	OPEN BRANCH FROM BUS 246763 TO BUS 246988 CKT 1 / 246763 05PIPECK 138 246988 05STRWTN 138 1
	END
	CONTINGENCY 'AEP_P1-2_#8702'
AEP_P1-2_#8702	OPEN BRANCH FROM BUS 243218 TO BUS 243232 CKT 2 / 243218 05DESOTO 345 243232 05SORENS 345 2
	END

Contingency Name	Description
	CONTINGENCY 'AEP_P4_#2965_05DESOTO 345'
AEP_P4_#2965_05	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 / 243218 05DESOTO 345 923880 AB2-028 TAP 345 1
DESOTO 345	OPEN BRANCH FROM BUS 243218 TO BUS 243278 CKT 1 / 243218 05DESOTO 345 243278 05DESOTO 138 1
	END
	CONTINGENCY 'AEP_P7-1_#3206_B'
AEP_P7-	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 / 243218 05DESOTO 345 923880 AB2-028 TAP C 345 1
1_#3206_B	OPEN BRANCH FROM BUS 243222 TO BUS 254535 CKT 1 / 243222 05FALL C 345 254535 16SUNNYS 345 1
	END

Table 2

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)
None

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

	AD1-043 Contribution to Previously Identified Overloads													
	(Contingency	Affected	Facility	B	us			Load	ding	Ra	ting	MW	\mathbf{FG}
#	Type	Name	Area	Description	From	To	Cir.	\mathbf{PF}	Initial	Final	Type	MVA	Con.	App.
				05HOGAN-										
		AEP_P4_#2965_	AEP -	05DELAWR										
1	LFFB	05DESOTO 345	AEP	138 kV line	243311	243275	1	DC	102.82	113.78	ER	231	25.29	1
				05HOGAN-										
		AEP_P7-	AEP -	05DELAWR										
2	DCTL	1_#3206_B	AEP	138 kV line	243311	243275	1	DC	101.56	113.12	ER	231	26.69	

Table 3

Steady-State Voltage Requirements

(Results of the steady-state voltage studies should be inserted here)

None

Short Circuit

(Summary of impacted circuit breakers)

New circuit breakers found to be over-duty:

None

Affected System Analysis & Mitigation

LGEE Impacts:

LGEE Impacts to be determined during later study phases (as applicable).

MISO Impacts:

MISO Impacts to be determined during later study phases (as applicable).

Duke, Progress & TVA Impacts:

Duke Carolina, Progress, & TVA Impacts to be determined during later study phases (as applicable).

OVEC Impacts:

OVEC Impacts to be determined during later study phases (as applicable).

Delivery of Energy Portion of Interconnection Request

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request. Only the most severely overloaded conditions are listed. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed, which will study all overload conditions associated with the overloaded element(s) identified.

	AD1-043 Delivery of Energy Portion of Interconnection Request													
	Contingency		Affected	Facility	В	Bus			Loading			ting	MW	\mathbf{FG}
#	Type	Name	Area	Description	From	To	Cir.	\mathbf{PF}	Initial	Final	Type	MVA	Con.	App.
				05KEYSTN-										
		AEP_P1-	AEP -	05SORENS 345										
1	N-1	2_#8702	AEP	kV line	243225	243232	1	DC	121.33	122.91	NR	897	13.65	
				05TANNER-										
		AEP_P1-	AEP -	08M.FORT 345										
2	N-1	2_#2811	DEO&K	kV line	243233	249567	1	DC	98.09	99.55	NR	1409	18.48	
				05HOGAN-										
		AEP_P1-	AEP -	05DELAWR 138										
3	N-1	2_#673-A	AEP	kV line	243311	243275	1	DC	101.33	112.54	ER	231	25.87	

	AD1-043 Delivery of Energy Portion of Interconnection Request													
	Contingency		Affected	Facility Bus				Loading		Rating		MW	\mathbf{FG}	
#	Type	Name	Name Area Description		From	To	Cir.	\mathbf{PF}	Initial	Final	Type	MVA	Con.	App.
				05HOGAN-										
			AEP -	05DELAWR 138										
4	Non	Non	AEP	kV line	243311	243275	1	DC	91.84	106.83	NR	167	25	
				05STRWTN-										
		AEP_P1-	AEP -	05ALEXAN 138										
5	N-1	2_#6964	AEP	kV line	246988	247116	1	DC	87.21	120.01	ER	150	49.14	
				05ALEXAN-										
		AEP_P1-	AEP -	05JONES 138 kV										
6	N-1	2_#6964	AEP	line	247116	246913	1	DC	74.95	107.74	ER	150	49.14	

Table 4

New System Reinforcements

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None

Contribution to Previously Identified System Reinforcements

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

(Summary form of Cost allocation for transmission lines and transformers will be inserted here if any)

Violation #	Overloaded Facility	Upgrade Description	Schedule	Estimated Cost
#1 and #2	HOGAN-DELAWARE 138 kV line	 (1) An Engineering study will need to be conducted to determine if the CT Thermal limits settings can be adjusted to mitigate the overload. (2) Upgrade bus work – Delaware Bus (3) 5.21 miles of AEP owned conductor will need to be rebuilt/reconductored (4) Replace line risers – Delaware CB/Line Risers Note: All of the upgrades identified above are being handled by various projects in the area. One of the projects is S0738 and the others are still going through the RTEP process for approval. 	An approximate construction time would be 24 to 36 months after signing an interconnection agreement.	\$8,135,000
			Total Previous Network Upgrades	\$8,135,000

Table 5

Schedule

It is anticipated that the time between receipt of executed agreements and Commercial Operation may range from 12 to 18 months if no line work is required. If line work is required, construction time would be between 24 to 36 months after signing an interconnection agreement.

Note: The time provided between anticipated normal completion of System Impact, Facilities Studies, subsequent execution of ISA and ICSA documents, and the proposed Backfeed Date is shorter than usual and may be difficult to achieve.

Conclusion

Based upon the results of this Feasibility Study, the construction of the 120.0 MW (45.6 MW Capacity) solar generating facility of The Interconnection Customer(PJM Project #AD1-043) will require the following additional interconnection charges. This plan of service will interconnect the proposed generating facility in a manner that will provide operational reliability and flexibility to both the AEP system and the Invenergy Solar Development North America LLC's generating facility.

Cost Breakdo	own for Primary Point of Interconnection (Makahoy 138 kV S	ubstation)
Attachment Cost	Expand Makahoy 138 kV Substation	\$1,000,000
	138 kV Revenue Metering	\$250,000
	Upgrade line protection and controls at the Makahoy 138 kV station.	\$250,000
Non-Direct Connection Cost Estimate	Contribution to Previously Identified System Reinforcements (Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study) (Summary form of Cost allocation for transmission lines and transformers will be inserted here if any) Note: All of the upgrades identified are being handled by various projects in the area. One of the projects is \$0738 and the others are still going through the RTEP process for approval. PJM will determine cost allocation if any in the System Impact study.	\$8,135,000
	Total Estimated Cost for Project AD1-043	\$9,635,000

Table 6

The estimates are preliminary in nature, as they were determined without the benefit of detailed engineering studies. Final estimates will require an on-site review and coordination to determine final construction requirements.

Option 2

Network Impacts

The Queue Project AD1-043 was evaluated as a 120.0 MW (Capacity 45.6 MW) injection tapping Strawton to Aladdin 138kV line in the AEP area. Project AD1-043 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AD1-043 was studied with a commercial probability of 53%. Potential network impacts were as follows:

<u>Summer Peak Analysis – 2021</u>

Contingency Descriptions

The following contingencies resulted in overloads:

Contingency Name	Description	
	CONTINGENCY '844_B3_05HOGAN 138-1_WOMOAB'	
	OPEN BRANCH FROM BUS 247420 TO BUS 243311 CKT 1 ST Z 138 243311 05HOGAN 138 1	/ 247420 05CROSS
	OPEN BRANCH FROM BUS 243275 TO BUS 243311 CKT 1 05DELAWR 138 243311 05HOGAN 138 1	/ 243275
844_B3_05HOGAN 138- 1_WOMOAB	OPEN BRANCH FROM BUS 243311 TO BUS 246913 CKT 1 138 246913 05JONES 138 1	/ 243311 05HOGAN
	OPEN BRANCH FROM BUS 243311 TO BUS 246046 CKT 1 138 246046 05HOGAN 34.5 1	/ 243311 05HOGAN
	OPEN BRANCH FROM BUS 243311 TO BUS 246047 CKT 1 138 246047 05HOGAN L 12.0 1	/ 243311 05HOGAN
	END	
	CONTINGENCY 'AEP_P1-2_#2811'	
	OPEN BRANCH FROM BUS 243233 TO BUS 248001 CKT Z1 05TANNER 345 248001 06DEARB1 345 Z1	/ 243233
AFD D1 2 #2011	OPEN BRANCH FROM BUS 243233 TO BUS 249565 CKT 1 345 249565 08EBEND 345 1	/ 243233 05TANNER
AEP_P1-2_#2811	OPEN BRANCH FROM BUS 248000 TO BUS 248001 CKT 1 345 248001 06DEARB1 345 1	/ 248000 06CLIFTY
	OPEN BRANCH FROM BUS 248001 TO BUS 248013 CKT 1 345 248013 06PIERCE 345 1	/ 248001 06DEARB1
	END	

Contingency Name	Description	
	CONTINGENCY 'AEP_P1-2_#673-A'	
AEP_P1-2_#673-A	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 345 923880 AB2-028 TAP 345 1	/ 243218 05DESOTO
	END	
	CONTINGENCY 'AEP_P1-2_#6964'	
AEP_P1-2_#6964	OPEN BRANCH FROM BUS 246763 TO BUS 246988 CKT 1 138 246988 05STRWTN 138 1	/ 246763 05PIPECK
	END	
	CONTINGENCY 'AEP_P1-2_#8702'	
AEP_P1-2_#8702	OPEN BRANCH FROM BUS 243218 TO BUS 243232 CKT 2 345 243232 05SORENS 345 2	/ 243218 05DESOTO
	END	
	CONTINGENCY 'AEP_P4_#2965_05DESOTO 345'	
AEP P4 #2965 05DESOTO	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 345 923880 AB2-028 TAP 345 1	/ 243218 05DESOTO
345	OPEN BRANCH FROM BUS 243218 TO BUS 243278 CKT 1 345 243278 05DESOTO 138 1	/ 243218 05DESOTO
	END	
	CONTINGENCY 'AEP_P7-1_#3206_B'	
AED D7 1 #2207 D	OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 345 923880 AB2-028 TAP C 345 1	/ 243218 05DESOTO
AEP_P7-1_#3206_B	OPEN BRANCH FROM BUS 243222 TO BUS 254535 CKT 1 345 254535 16SUNNYS 345 1	/ 243222 05FALL C
	END	
	CONTINGENCY 'AEP_P7-1_#6872-B'	
	OPEN BRANCH FROM BUS 243218 TO BUS 243225 CKT 1 345 243225 05KEYSTN 345 1	/ 243218 05DESOTO
AEP_P7-1_#6872-B	OPEN BRANCH FROM BUS 925800 TO BUS 243233 CKT 1 TAP 345 243233 05TANNER 345 1	/ 2925800 AC1-059
	OPEN BRANCH FROM BUS 243218 TO BUS 243232 CKT 2 345 243232 05SORENS 345 2	/ 243218 05DESOTO
	END	

Table 7

<u>Generator Deliverability</u>
(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

	AD1-043 Contribution to Previously Identified Overloads													
		Contingency	Affected	Facility	Bus			Loa	Loading		Rating		\mathbf{FG}	
#	Type	Name	Area	Description	From	To	Cir.	\mathbf{PF}	Initial	Final	Type	MVA	Con.	App.
				05DESOTO-										
				05JAY 138 kV										
1	DCTL	AEP_P7-1_#6872-B	AEP - AEP	line	243278	243319	1	DC	102.59	103.28	ER	393	6.04	1
				05HOGAN-										
		AEP_P4_#2965_05DESOTO		05DELAWR										
2	LFFB	345	AEP - AEP	138 kV line	243311	243275	1	DC	102.98	116.98	ER	231	32.33	1
				The 05HOGAN-										
				05DELAWR										
3	DCTL	AEP_P7-1_#3206_B	AEP - AEP	138 kV line	243311	243275	1	DC	101.72	116.31	ER	231	33.67	1

Table 8

Steady-State Voltage Requirements

(Results of the steady-state voltage studies should be inserted here)

None

Short Circuit

(Summary of impacted circuit breakers)

None

Affected System Analysis & Mitigation

LGEE Impacts:

LGEE Impacts to be determined during later study phases (as applicable).

MISO Impacts:

MISO Impacts to be determined during later study phases (as applicable).

Duke, Progress & TVA Impacts:

Duke Carolina, Progress, & TVA Impacts to be determined during later study phases (as applicable).

OVEC Impacts:

OVEC Impacts to be determined during later study phases (as applicable).

Delivery of Energy Portion of Interconnection Request

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Only the most severely overloaded conditions are listed. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed, which will study all overload conditions associated with the overloaded element(s) identified.

	AD1-043 Delivery of Energy Portion of Interconnection Request													
		Contingency	Affected	Bus					Loa	ding	Ra	Rating		\mathbf{FG}
#	Type	Name	Area	Facility Description	From	To	Cir.	\mathbf{PF}	Initial	Final	Type	MVA	Con.	App.
				05KEYSTN- 05SORENS 345 kV										
1	N-1	AEP_P1-2_#8702	AEP - AEP	line	243225	243232	1	DC	121.54	123.12	NR	897	13.63	
2	N-1	AEP P1-2 #2811	AEP - DEO&K	05TANNER- 08M.FORT 345 kV line	243233	249567	1	DC	98.09	98.73	NR	1409	18.03	
	11-1	AEF_F1-2_#2011	DEO&K	05HOGAN-	243233	249307	1	DC	96.09	90.73	INIX	1409	16.03	
				05DELAWR 138 kV										
3	N-1	AEP_P1-2_#673-A	AEP - AEP	line	243311	243275	1	DC	101.49	115.77	ER	231	32.97	
				05HOGAN- 05DELAWR 138 kV										
4	N-1	None	AEP - AEP	line	243311	243275	1	DC	91.9	111.36	NR	167	32.48	
5	N-1	844_B3_05HOGAN 138-1_WOMOAB	AEP - AEP	05STRWTN- 05PIPECK 138 kV line	246988	246763	1	DC	70.71	100.53	ER	205	61.12	
6	N-1	AEP_P1-2_#6964	AEP - AEP	05ALEXAN-05JONES 138 kV line	247116	246913	1	DC	75.01	119.31	ER	150	66.4	
				AD1-043 TAP- 05ALEXAN 138 kV										
7	N-1	AEP_P1-2_#6964	AEP - AEP	line	934160	247116	1	DC	87.21	131.51	ER	150	66.4	

Table 9

Figure 1: Primary Point of Interconnection (Makahoy 138kV Substation)

Single Line Diagram

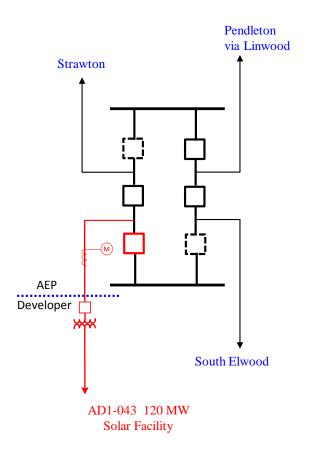


Figure 2: Primary Point of Interconnection (Makahoy 138kV Substation)

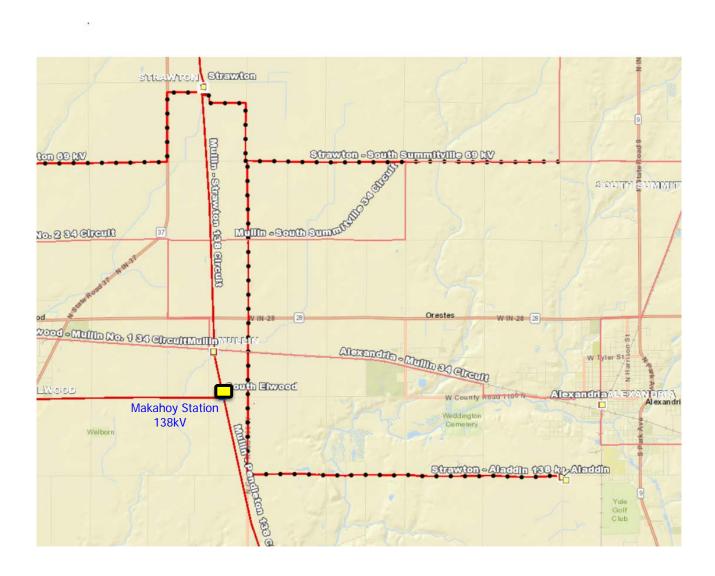


Figure 3: Secondary Point of Interconnection (Strawton – Aladdin 138kV)

Single Line Diagram

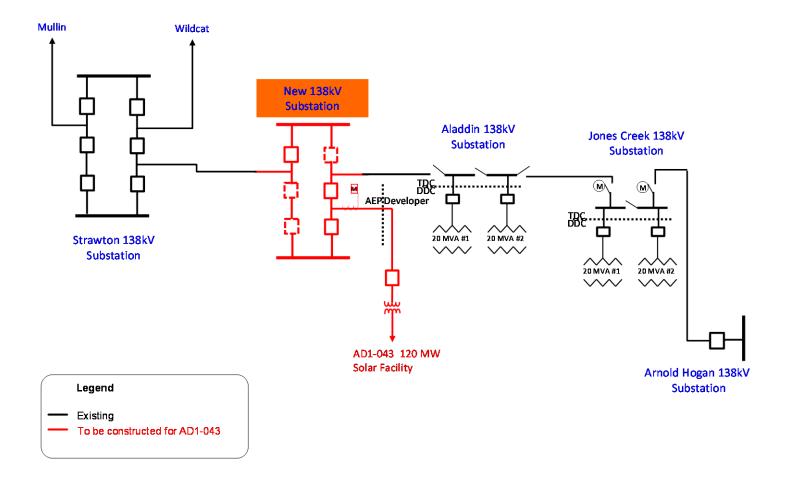
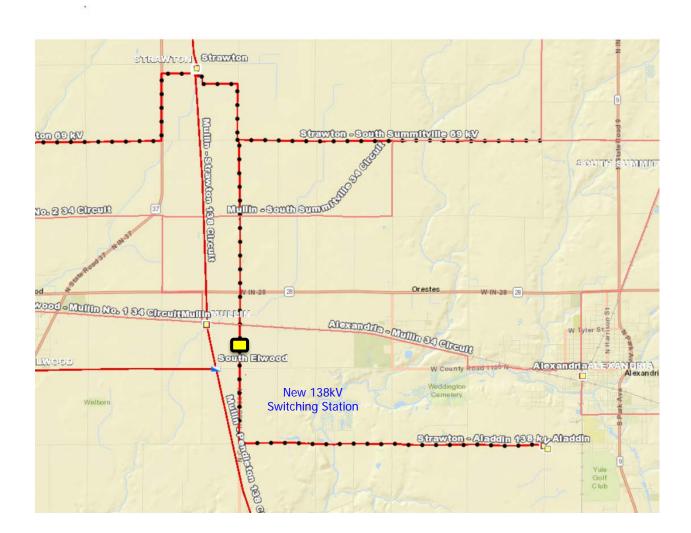



Figure 4: Secondary Point of Interconnection (Strawton – Aladdin 138kV)

Appendices

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact.

It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

Appendix 1

(AEP - AEP) The 05HOGAN-05DELAWR 138 kV line (from bus 243311 to bus 243275 ckt 1) loads from 102.82% to 113.78% (**DC power flow**) of its emergency rating (231 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#2965_05DESOTO 345'. This project contributes approximately 25.29 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#2965_05DESOTO 345'

OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 / 243218
05DESOTO 345 923880 AB2-028 TAP 345 1

OPEN BRANCH FROM BUS 243218 TO BUS 243278 CKT 1 / 243218
05DESOTO 345 243278 05DESOTO 138 1

END

Bus Number	Bus Name	Full Contribution
246991	05WLD G1 C	0.57
247914	05WLD G1 E	19.42
247255	05WLD G2 C	0.6
247958	05WLD G2 E	20.38
934161	AD1-043 C O1	9.61
934162	AD1-043 E 01	15.68
247588	W4-004 C	1.21
247946	W4-004 E	8.1
247589	W4-008 C	1.21
247953	W4-008 E	8.1
917722	Z2-115 E	0.08
920102	AA2-106 E	1.29
920501	AA2-148 C	2.35
920502	AA2-148 E	15.75
923881	AB2-028 C	1.67
923882	AB2-028 E	11.17
924211	AB2-065 C	1.66
924212	AB2-065 E	11.19
926091	AC1-088	4.57

Appendices - Option 2

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact.

It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

Appendix 1

(AEP - AEP) The 05DESOTO-05JAY 138 kV line (from bus 243278 to bus 243319 ckt 1) loads from 102.59% to 103.28% (**DC power flow**) of its emergency rating (393 MVA) for the tower line contingency outage of 'AEP_P7-1_#6872-B'. This project contributes approximately 6.04 MW to the thermal violation.

CONTINGENCY 'AEP_P7-1_#6872-B'

OPEN BRANCH FROM BUS 243218 TO BUS 243225 CKT 1 / 243218

05DESOTO 345 243225 05KEYSTN 345 1

OPEN BRANCH FROM BUS 925800 TO BUS 243233 CKT 1 / 2925800 AC1-059

TAP 345 243233 05TANNER 345 1

OPEN BRANCH FROM BUS 243218 TO BUS 243232 CKT 2 / 243218

05DESOTO 345 243232 05SORENS 345 2

END

Bus Number	Bus Name	Full Contribution
247963	05HDWTR1G E	5.51
932681	AC2-090 C	3.34
932682	AC2-090 E	5.45
933601	AC2-177 C	2.29
933602	AC2-177 E	15.3
934161	AD1-043 C O2	2.3
934162	AD1-043 E O2	3.75
LTF	CARR	0.05
LTF	CBM-S1	2.16
LTF	CBM-S2	0.77
LTF	CBM-W1	0.75
LTF	CBM-W2	16.65
LTF	CIN	4.52
LTF	CPLE	0.15
LTF	DEARBORN	0.56
LTF	G-007	0.08
LTF	IPL	4.14
LTF	LGEE	0.55
LTF	MEC	2.2
LTF	O-066	0.26
LTF	RENSSELAER	0.04
LTF	ROSETON	0.29
247543	V3-007 C	2.29
247935	V3-007 E	15.3
LTF	WEC	0.14
920102	AA2-106 E	7.96
923881	AB2-028 C	1.92
923882	AB2-028 E	12.87
925801	AC1-059 C	3.97

925802	AC1-059 E	26.54
926871	AC1-174 C	3.34
926872	AC1-174 E	5.45
926881	AC1-175 C	3.34
926882	AC1-175 E	5.45
927181	AC1-212 C	1.26
927182	AC1-212 E	0.21

Appendix 2

(AEP - AEP) The 05HOGAN-05DELAWR 138 kV line (from bus 243311 to bus 243275 ckt 1) loads from 102.98% to 116.98% (**DC power flow**) of its emergency rating (231 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#2965_05DESOTO 345'. This project contributes approximately 32.33 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#2965_05DESOTO 345'

OPEN BRANCH FROM BUS 243218 TO BUS 923880 CKT 1 / 243218
05DESOTO 345 923880 AB2-028 TAP 345 1

OPEN BRANCH FROM BUS 243218 TO BUS 243278 CKT 1 / 243218
05DESOTO 345 243278 05DESOTO 138 1

END

Bus Number	Bus Name	Full Contribution
246991	05WLD G1 C	0.57
247914	05WLD G1 E	19.42
247255	05WLD G2 C	0.6
247958	05WLD G2 E	20.38
934161	AD1-043 C O2	12.28
934162	AD1-043 E O2	20.04
LTF	CARR	0.04
LTF	CBM-S1	1.73
LTF	CBM-S2	0.56
LTF	CBM-W1	2.78
LTF	CBM-W2	16.4
LTF	CIN	4.57
LTF	CPLE	0.1
LTF	DEARBORN	0.25
LTF	G-007	0.07
LTF	IPL	4.09
LTF	LGEE	0.35
LTF	MEC	2.64
LTF	O-066	0.24
LTF	RENSSELAER	0.03
LTF	ROSETON	0.22
247588	W4-004 C	1.21
247946	W4-004 E	8.1
247589	W4-008 C	1.21
247953	W4-008 E	8.1
LTF	WEC	0.25
917722	Z2-115 E	0.08
920102	AA2-106 E	1.29
920501	AA2-148 C	2.35
920502	AA2-148 E	15.75
923881	AB2-028 C	1.67

923882	AB2-028 E	11.17
924211	AB2-065 C	1.66
924212	AB2-065 E	11.19
926091	AC1-088	4.58