Generation Interconnection Feasibility Study Report

For

PJM Generation Interconnection Request Queue Position AD1-137

Dequine 345 kV

Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

General

The Interconnection Customer (IC) proposes to install PJM Project #AD1-137, a 500.0 MW (65.0 MW Capacity) wind generating facility in Benton, IN (see Figure 2). The point of interconnection will be a direct connection to AEP's Dequine 345 kV substation (see Figure 1).

The requested in service date is December 18, 2020.

Attachment Facilities

Point of Interconnection (Dequine 345 kV Substation)

To accommodate the interconnection at the Dequine 345 kV substation, the substation will have to be expanded requiring the installation of one (1) 345 kV circuit breaker (see Figure 1). Installation of associated protection and control equipment, 345 kV line risers, SCADA, and 345 kV revenue metering will also be required.

Dequine Station Work:

- Install one (1) new 345 kV circuit breaker and associated bus work. Installation of associated protection and control equipment, 345 kV line risers, SCADA, and 345 kV revenue metering will also be required.
 - Estimated Station Cost: \$2,500,000

Non-Direct Connection Cost Estimate

The total preliminary cost estimate for Non-Direct Connection work is given in the following tables below:

For AEP building Direct Connection cost estimates:

Description	Estimated Cost
345 kV Revenue Metering	\$350,000
Upgrade line protection and controls at the expanded Dequine 345 kV substation.	\$600,000
Total	\$950,000

Table 1

Interconnection Customer Requirements

It is understood that The IC is responsible for all costs associated with this interconnection. The cost of the IC's generating plant and the costs for the line connecting the generating plant to the Dequine 345 kV substation are not included in this report; these are assumed to be IC's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for American Electric Power to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

Requirement from the PJM Open Access Transmission Tariff:

1. An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

Revenue Metering and SCADA Requirements

PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for the IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Sections 24.1 and 24.2.

AEP Requirements

The Interconnection Customer will be required to comply with all AEP Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "Requirements for Connection of New Facilities or Changes to Existing Facilities Connected to the AEP Transmission System" document located at the following link:

http://www.pjm.com/~/media/planning/plan-standards/private-aep/aep-interconnection-requirements.ashx

Network Impacts

The Queue Project AD1-137 was evaluated as a 500.0 MW (Capacity 65.0 MW) injection at Dequine 345 kV substation in the AEP area. Project AD1-137 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AD1-137 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Base Case Used

Summer Peak Analysis – 2021 Case

Contingency Descriptions

The following contingencies resulted in overloads:

	Contingencies	
Contingency Name	Descri	ption
'AEP P4 #1760 05JEFRSO	OPEN BRANCH FROM BUS 243207 TO BUS 243208 CKT 765 1	1 / 243207 05GRNTWN 765 243208 05JEFRSO
765'	OPEN BRANCH FROM BUS 242924 TO BUS 243208 CKT	1 / 242924 05HANG R 765 243208 05JEFRSO 765
	END	
'AEP P4 #6189 05HANG R	OPEN BRANCH FROM BUS 242921 TO BUS 242924 CKT	1 / 242921 05CORNU 765 242924 05HANG R 765
765'	OPEN BRANCH FROM BUS 242924 TO BUS 243208 CKT	1 / 242924 05HANG R 765 243208 05JEFRSO 765
	END	
'AEP_P4_#6485_05DEQUIN	OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT : 345 2	2 / 243217 05DEQUIN 345 243878 05MEADOW
345'	OPEN BRANCH FROM BUS 243217 TO BUS 249525 CKT 345 1	1 / 243217 05DEQUIN 345 249525 08WESTWD
	END	
'AEP_P1-2_#6490'	OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT : 345 2 END	2 / 243217 05DEQUIN 345 243878 05MEADOW
	OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT	1 / 243217 05DEQUIN 345 243878 05MEADOW
'AEP_P4_#4704_05DEQUIN 345'	345 1 OPEN BRANCH FROM BUS 243217 TO BUS 249525 CKT 345 1	1 / 243217 05DEQUIN 345 249525 08WESTWD
	END	
	OPEN BRANCH FROM BUS 243206 TO BUS 907040 CKT	
'AEP_P4_#2978_05DUMONT 765'	OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 765 1 END	1 / 243206 05DUMONT 765 270644 WILTON;
'AEP_P1-2_#709'	OPEN BRANCH FROM BUS 242924 TO BUS 243208 CKT	1 / 242924 05HANG R 765 243208 05JEFRSO 765
	END	
'AEP_P1-2_#8695'	OPEN BRANCH FROM BUS 243878 TO BUS 255205 CKT 17REYNOLDS 345 1 END	1 / 243878 05MEADOW 345 255205
'AEP_P1-2_#6472'	OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT 345 1 END	1 / 243217 05DEQUIN 345 243878 05MEADOW

Table 2

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

		Contingency	Affected	Facility	В	us			Loa	ding	Ra	ting	MW	FG
#	Type	Name	Area	Description	From	To	Cir.	PF	Initial	Final	Type	MVA	Con.	App.
				05JEFRSO-										
		AEP_P4_#1760_05	AEP -	06CLIFTY 345										1
1	LFFB	JEFRSO 765	OVEC	kV line	242865	248000	Z1	DC	135.85	136.63	ER	2045	32.84	1
				05JEFRSO-										1
		AEP_P4_#6189_05	AEP -	06CLIFTY 345										1
2	LFFB	HANG R 765	OVEC	kV line	242865	248000	Z1	DC	101.28	102.18	ER	2045	59.56	
				05DEQUIN-										1
		AEP_P4_#6485_05	AEP -	05MEADOW										1
3	LFFB	DEQUIN 345	AEP	345 kV line	243217	243878	1	DC	123.95	137.97	ER	1959	274.61	2
				05DEQUIN-										1
			AEP -	05MEADOW										1
4	N-1	AEP_P1-2_#6490	AEP	345 kV line	243217	243878	1	DC	120.41	122.89	NR	1409	34.91	
				05DEQUIN-										1
		AEP_P4_#4704_05	AEP -	05MEADOW										İ
5	LFFB	DEQUIN 345	AEP	345 kV line	243217	243878	2	DC	123.07	136.99	ER	1959	272.67	3
				05DEQUIN-										İ
			AEP -	05MEADOW										İ
6	N-1	AEP_P1-2_#6472	AEP	345 kV line	243217	243878	2	DC	119.54	121.99	NR	1409	34.66	
				X2-052 TAP-										1
		AEP_P4_#2978_05	AEP -	05DUMONT										1
7	LFFB	DUMONT 765	AEP	345 kV line	247610	243219	2	DC	119.21	120.81	ER	1409	43.74	4

Table 3

Steady-State Voltage Requirements

(Results of the steady-state voltage studies should be inserted here)

None

Short Circuit

(Summary of impacted circuit breakers)

None

Delivery of Energy Portion of Interconnection Request

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

	AD1-137 Delivery of Energy Portion of Interconnection Request												
		Contingency	Affected		В	us			Loa	ding	Ra	ting	MW
#	Type	Name	Area	Facility Description	From	To	Cir.	PF	Initial	Final	Type	MVA	Con.
			AEP -	05JEFRSO-06CLIFTY									
1	N-1	'AEP_P1-2_#709'	OVEC	345 kV line	242865	248000	Z1	DC	115.98	117.04	NR	1756	59.68
				05DEQUIN-									
				05MEADOW 345 kV									
2	N-1	'AEP_P1-2_#6490'	AEP - AEP	line	243217	243878	1	DC	168.3	187.36	NR	1409	268.55
				05DEQUIN-									
				05MEADOW 345 kV									
3	N-1	'AEP_P1-2_#6472'	AEP - AEP	line	243217	243878	2	DC	167.07	185.99	NR	1409	266.58
				05MEADOW-									
			AEP -	17REYNOLDS 345 kV									
4	N-1	'AEP_P1-2_#8695'	MISO NIPS	line	243878	255205	2	DC	143.52	156.91	NR	2114	283.08

Table 4

New System Reinforcements

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None

Contribution to Previously Identified System Reinforcements

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

(Summary form of Cost allocation for transmission lines and transformers will be inserted here if any)

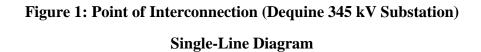
(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

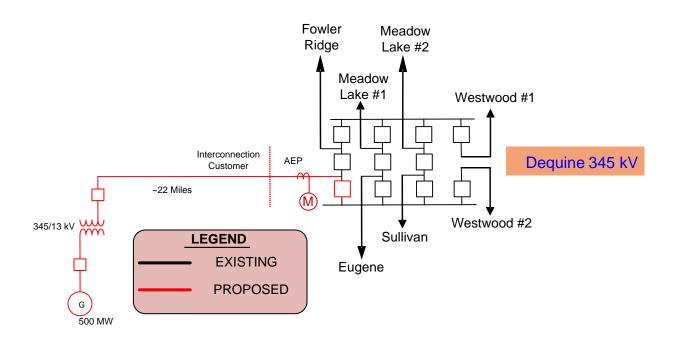
- 1. PJM Network Upgrade Project #N5034 will relieve the Dequine Meadow Lake 345 kV constraint identified in this report. The constraint is driven by the X3-028 MTX project. The X3-028 upgrade is to build a new Sullivan Reynolds 765 kV line. Cost is \$464 Million. AD1-137 could receive cost allocation.
- 2. PJM Network Upgrade Project #N4512 will relieve the X2-052 Tap Dumont 345 kV constraint identified in this report. Cost is: \$1,382,077. AD1-137 could receive cost allocation.
- 3. PJM Baseline Project #B2878 will increase the SE rating for Jefferson Clifty Creek 345 kV line to 2354 MVA. Network upgrade Project #N4106 will relieve the constraint identified for this line and increase the SE rating to 3113 MVA. Cost is: \$243,875. AD1-137 could receive cost allocation.
- 4. AD1-137 will need the upgrades listed above in-service in order to be fully deliverable to the PJM system.

Schedule

It is anticipated that the time between receipt of executed agreements and Commercial Operation may range from 12 to 18 months if no line work or associated network upgrades caused by the X3-028 project are required. If line work is required, construction time would be between 24 to 36 months after signing an Interconnection Construction Service Agreement (ICSA).

Note: The time provided between anticipated normal completion of System Impact, Facilities Studies, subsequent execution of ISA and ICSA documents, and the proposed In-Service Date is shorter than usual and may be difficult to achieve.


Conclusion


Based upon the results of this Feasibility Study, the construction of the IC's 500.0 MW (65.0 MW Capacity) wind generating facility (PJM Project #AD1-137) will require the following additional interconnection charges. This plan of service will interconnect the proposed wind generating facility in a manner that will provide operational reliability and flexibility to both the AEP system and the IC's generating facility.

Attachment Cost	st Breakdown for Point of Interconnection (Dequine 345 kV Substation Expand Dequine 345 kV Substation	\$2,500,000
	345 kV Revenue Metering	\$350,000
	Upgrade line protection and controls at the expanded Dequine 345 kV substation.	\$600,000
Non-Direct Connection Cost Estimate	Contribution to Previously Identified System Reinforcements (Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)	\$465,625,952
	Total Estimated Cost for Project AD1-137	\$469,075,952

Table 5

The estimates are preliminary in nature, as they were determined without the benefit of detailed engineering studies. Final estimates will require an on-site review and coordination to determine final construction requirements.

Appendices

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the Appendices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the Appendices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators.

It should be noted the project/generator MW contributions presented in the body of the report and appendices sections are full contributions, whereas the loading percentages reported in the body of the report, take into consideration the commercial probability of each project as well as the ramping impact of "Adder" contributions.

(AEP - OVEC) The 05JEFRSO-06CLIFTY 345 kV line (from bus 242865 to bus 248000 ckt Z1) loads from 135.85% to 136.63% (**DC power flow**) of its emergency rating (2045 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#1760_05JEFRSO 765'. This project contributes approximately 32.84 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#1760_05JEFRSO 765'

OPEN BRANCH FROM BUS 243207 TO BUS 243208 CKT 1 / 243207

05GRNTWN 765 243208 05JEFRSO 765 1

OPEN BRANCH FROM BUS 242924 TO BUS 243208 CKT 1 / 242924 05HANG
R 765 243208 05JEFRSO 765 1

END

Bus Number	Bus Name	Full Contribution
247900	05FR-11G E	5.14
247901	05FR-12G E	5.06
247902	05FR-21G E	5.41
247903	05FR-22G E	5.18
247904	05FR-3G E	10.48
247905	05FR-4G E	7.88
247906	05MDL-1G E	9.05
247907	05MDL-2G E	4.49
247912	05MDL-3G E	4.69
247913	05MDL-4G E	4.48
243442	05RKG1	83.74
243443	05RKG2	82.47
933391	AC2-152 C	0.22
933392	AC2-152 E	0.35
933441	AC2-157 C	13.32
933442	AC2-157 E	21.73
934051	AD1-031 C 01	1.44

934052	AD1-031 E 01	2.34
934421	AD1-066	0.53
LTF	AD1-092	5.73
LTF	AD1-093	9.73
LTF	AD1-094	1.81
935001	AD1-133 C O1	9.32
935002	AD1-133 E O1	6.21
935271	AD1-137 C	4.27
935272	AD1-137 E	28.57
935141	AD1-148	3.42
274832	ANNAWAN ; 1U	5.37
LTF	BLUEG	16.89
294401	BSHIL;1U E	4.32
294410	BSHIL;2U E	4.32
LTF	CARR	0.43
274890	CAYUG;1U E	6.4
274891	CAYUG;2U E	6.4
LTF	CBM-S1	4.12
LTF	CBM-S2	0.71
LTF	CBM-W1	37.92
LTF	CBM-W2	103.09
LTF	CIN	16.67
LTF	CLIFTY	86.79
274849	CRESCENT;1U	2.93
LTF	G-007	1.22
LTF	IPL	10.96

983071	J332	5.17
981181	J708	22.11
981521	J759	5.6
981531	J762	12.42
981571	J783	5.55
990901	L-005 E	6.61
LTF	MEC	25.49
LTF	MECS	4.15
293516	O-009 E1	4.21
293517	O-009 E2	2.14
293518	O-009 E3	2.35
293715	O-029 E	4.5
293716	O-029 E	2.47
293717	O-029 E	2.27
293771	O-035 E	3.19
LTF	O-066	4.1
296308	R-030 C1	1.89
296271	R-030 C2	1.89
296125	R-030 C3	1.91
296309	R-030 E1	7.57
296272	R-030 E2	7.57
296128	R-030 E3	7.66
LTF	RENSSELAER	0.34
LTF	ROSETON	2.47
247943	T-127 E	4.59
LTF	TRIMBLE	3.9
	1	1

274853	TWINGROVE;U1	9.91
274854	TWINGROVE;U2	9.91
276150	W2-048 E	0.94
903433	W3-046	10.63
905082	W4-005 E	20.4
LTF	WEC	3.16
909052	X2-022 E	13.1
900404	X3-028 C	262.86
900405	X3-028 E	350.48
913222	Y1-054 E	-1.34
915662	Y3-099 E	0.14
915672	Y3-100 E	0.14
LTF	Z1-043	13.83
916182	Z1-065 E	0.37
916272	Z1-080 E	0.3
917501	Z2-087 C	1.48
917502	Z2-087 E	9.93
918802	AA1-099 E	0.2
919221	AA1-146	7.89
919581	AA2-030	7.89
919621	AA2-039 C	1.05
919622	AA2-039 E	7.05
930041	AB1-006 C	1.47
930042	AB1-006 E	9.86
930461	AB1-087	96.38
930471	AB1-088	96.38
L		

LTF	AB2-013	8.11
924041	AB2-047 C O1	1.87
924042	AB2-047 E O1	12.53
924261	AB2-070 C O1	1.79
924262	AB2-070 E O1	11.99
925161	AB2-173	1.41
925242	AB2-178 E	1.43
925581	AC1-033 C	0.71
925582	AC1-033 E	4.73
927331	AC1-040 C	15.01
927332	AC1-040 E	24.48
925771	AC1-053 C	1.8
925772	AC1-053 E	12.05
926821	AC1-168 C	0.54
926822	AC1-168 E	3.61
926841	AC1-171 C	0.61
926842	AC1-171 E	4.09
927201	AC1-214 C	1.02
927202	AC1-214 E	2.72

(AEP - AEP) The 05DEQUIN-05MEADOW 345 kV line (from bus 243217 to bus 243878 ckt 1) loads from 123.95% to 137.97% (**DC power flow**) of its emergency rating (1959 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#6485_05DEQUIN 345'. This project contributes approximately 274.61 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#6485_05DEQUIN 345'
OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT 2 / 243217
05DEQUIN 345 243878 05MEADOW 345 2
OPEN BRANCH FROM BUS 243217 TO BUS 249525 CKT 1 / 243217
05DEQUIN 345 249525 08WESTWD 345 1
END

Bus Number	Bus Name	Full Contribution
243859	05FR-11G C	2.11
247900	05FR-11G E	43.
243862	05FR-12G C	2.08
247901	05FR-12G E	42.29
243864	05FR-21G C	2.22
247902	05FR-21G E	45.2
243866	05FR-22G C	2.12
247903	05FR-22G E	43.28
243870	05FR-3G C	4.3
247904	05FR-3G E	87.66
243873	05FR-4G C	3.33
247905	05FR-4G E	65.91
933441	AC2-157 C	10.2
933442	AC2-157 E	16.64
935271	AD1-137 C	35.7
935272	AD1-137 E	238.91
LTF	CARR	0.05

LTF	CBM-S1	9.98
LTF	CBM-S2	4.08
LTF	CBM-W2	91.82
LTF	CIN	23.66
LTF	CPLE	0.83
LTF	DEARBORN	2.45
LTF	G-007A	0.2
LTF	IPL	12.7
960026	J196 E	4.59
983081	J333	17.41
983091	J334	19.52
940541	J468 C	4.28
940542	J468 E	17.13
940552	J515 E	66.58
981511	J754 C	8.21
981512	J754 E	32.83
LTF	LGEE	1.68
LTF	MEC	8.45
LTF	O-066A	0.09
LTF	RENSSELAER	0.04
LTF	ROSETON	0.26
LTF	VFT	0.54
LTF	X1-078	0.16
900404	X3-028 C	201.3
900405	X3-028 E	268.4
930461	AB1-087	73.81

930471	AB1-088	73.81

(AEP - AEP) The 05DEQUIN-05MEADOW 345 kV line (from bus 243217 to bus 243878 ckt 2) loads from 123.07% to 136.99% (**DC power flow**) of its emergency rating (1959 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#4704_05DEQUIN 345'. This project contributes approximately 272.67 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#4704_05DEQUIN 345'

OPEN BRANCH FROM BUS 243217 TO BUS 243878 CKT 1 / 243217
05DEQUIN 345 243878 05MEADOW 345 1

OPEN BRANCH FROM BUS 243217 TO BUS 249525 CKT 1 / 243217
05DEQUIN 345 249525 08WESTWD 345 1

END

Bus Number	Bus Name	Full Contribution
243859	05FR-11G C	2.1
247900	05FR-11G E	42.7
243862	05FR-12G C	2.07
247901	05FR-12G E	41.99
243864	05FR-21G C	2.21
247902	05FR-21G E	44.88
243866	05FR-22G C	2.11
247903	05FR-22G E	42.97
243870	05FR-3G C	4.27
247904	05FR-3G E	87.04
243873	05FR-4G C	3.31
247905	05FR-4G E	65.44
933441	AC2-157 C	10.13
933442	AC2-157 E	16.52
935271	AD1-137 C	35.45
935272	AD1-137 E	237.22
LTF	CARR	0.05

LTF	CBM-S1	9.91
LTF	CBM-S2	4.06
LTF	CBM-W2	91.17
LTF	CIN	23.49
LTF	CPLE	0.82
LTF	DEARBORN	2.44
LTF	G-007A	0.2
LTF	IPL	12.61
960026	J196 E	4.56
983081	J333	17.29
983091	J334	19.39
940541	J468 C	4.25
940542	J468 E	17.01
940552	J515 E	66.11
981511	J754 C	8.15
981512	J754 E	32.6
LTF	LGEE	1.67
LTF	MEC	8.39
LTF	O-066A	0.09
LTF	RENSSELAER	0.04
LTF	ROSETON	0.26
LTF	VFT	0.54
LTF	X1-078	0.16
900404	X3-028 C	199.88
900405	X3-028 E	266.5
930461	AB1-087	73.29
<u> </u>	1	

930471	AB1-088	73.29

(AEP - AEP) The X2-052 TAP-05DUMONT 345 kV line (from bus 247610 to bus 243219 ckt 2) loads from 119.21% to 120.81% (DC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of 'AEP_P4_#2978_05DUMONT 765'. This project contributes approximately 43.74 MW to the thermal violation.

CONTINGENCY 'AEP_P4_#2978_05DUMONT 765'

OPEN BRANCH FROM BUS 243206 TO BUS 907040 CKT 1 / 243206

05DUMONT 765 X1-020

OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 1

/ 243206

05DUMONT 765 270644 WILTON; 765 1

END

Bus Number	Bus Name	Full Contribution
247900	05FR-11G E	6.85
247901	05FR-12G E	6.74
247902	05FR-21G E	7.2
247903	05FR-22G E	6.89
247904	05FR-3G E	13.96
247905	05FR-4G E	10.5
247906	05MDL-1G E	15.64
247907	05MDL-2G E	7.76
247912	05MDL-3G E	8.11
247913	05MDL-4G E	7.74
932011	AC2-007 C	0.5
932012	AC2-007 E	0.92
932601	AC2-080 C	3.73
932602	AC2-080 E	24.95
932881	AC2-115 1	1.41
932891	AC2-115 2	1.41
932921	AC2-116	0.49

932931	AC2-117	5.2
933341	AC2-147 C	0.52
933342	AC2-147 E	0.85
933351	AC2-148 C	0.52
933352	AC2-148 E	0.85
933361	AC2-149 C	0.55
933362	AC2-149 E	0.89
933371	AC2-150 C	0.52
933372	AC2-150 E	0.85
933381	AC2-151 C	0.57
933382	AC2-151 E	0.93
933391	AC2-152 C	0.25
933392	AC2-152 E	0.41
933401	AC2-153 C	0.27
933402	AC2-153 E	0.45
933411	AC2-154 C	1.41
933412	AC2-154 E	2.3
933431	AC2-156 C	0.56
933432	AC2-156 E	0.91
933511	AC2-166 C	1.37
933512	AC2-166 E	1.51
933911	AD1-013 C O1	1.09
933912	AD1-013 E 01	1.74
933931	AD1-016 C	0.55
933932	AD1-016 E	0.89
934001	AD1-024 C	1.41
	1	1

934002	AD1-024 E	2.31
934051	AD1-031 C O1	1.77
934052	AD1-031 E O1	2.89
934101	AD1-039 1	4.55
934111	AD1-039 2	4.65
934401	AD1-064 C O1	1.9
934402	AD1-064 E O1	8.89
934421	AD1-066	0.67
934431	AD1-067 C	0.08
934432	AD1-067 E	0.33
LTF	AD1-092	7.
LTF	AD1-093	12.05
LTF	AD1-094	2.32
934651	AD1-096 C	0.53
934652	AD1-096 E	0.87
934701	AD1-098 C O1	4.07
934702	AD1-098 E O1	2.97
934721	AD1-100 C	12.9
934722	AD1-100 E	60.4
934871	AD1-116 C	0.57
934872	AD1-116 E	0.94
934881	AD1-117 C	3.22
934882	AD1-117 E	2.15
934941	AD1-126 C	3.44
934942	AD1-126 E	2.29
934971	AD1-129 C	0.53
	, L	

934972	AD1-129 E	0.36
935001	AD1-133 C O1	12.64
935002	AD1-133 E O1	8.43
935271	AD1-137 C	5.69
935272	AD1-137 E	38.05
274832	ANNAWAN ; 1U	6.74
LTF	CARR	0.62
LTF	CATAWBA	0.03
274890	CAYUG;1U E	8.26
274891	CAYUG;2U E	8.26
LTF	CBM-S1	4.53
LTF	CBM-W1	39.47
LTF	CBM-W2	52.32
LTF	CELEVELAND	0.06
LTF	CIN	6.65
274849	CRESCENT;1U	3.66
LTF	DEARBORN	1.72
274859	EASYR;U1 E	6.6
274860	EASYR;U2 E	6.6
LTF	G-007	1.62
290051	GSG-6; E	6.19
LTF	HAMLET	0.29
LTF	IPL	3.39
275149	KEMPTON ;1E	10.39
290108	LEEDK;1U E	14.28
LTF	LGEE	0.57

LTF	MEC	25.48
274850	MENDOTA H;RU	3.56
293061	N-015 E	9.02
293516	O-009 E1	5.55
293517	O-009 E2	2.82
293518	O-009 E3	3.1
293715	O-029 E	5.93
293716	O-029 E	3.25
293717	O-029 E	2.99
293771	O-035 E	3.98
LTF	O-066	5.45
293644	O22 E1	5.94
293645	O22 E2	11.53
290021	O50 E	11.5
294392	P-010 E	11.46
294763	P-046 E	5.59
274888	PILOT HIL;1E	10.39
274830	PWR VTREC;1U	3.6
274831	PWR VTREC;2U	3.6
LTF	RENSSELAER	0.49
LTF	ROSETON	3.54
LTF	ROWAN	0.16
274722	S-055 E	6.57
295111	SUBLETTE E	1.61
247943	T-127 E	7.94
299993	U3-031C	2.9

291984	U4-033	0.8
274814	UNIV PK N;0U	0.65
274808	UNIV PK N;4U	0.65
274809	UNIV PK N;5U	0.65
274810	UNIV PK N;6U	0.65
274811	UNIV PK N;7U	0.65
274812	UNIV PK N;8U	0.65
274813	UNIV PK N;9U	0.65
274815	UNIV PK N;XU	0.65
274816	UNIV PK N;YU	0.65
903433	W3-046	14.48
274874	WALNR;2U	1.44
294502	WALNR;2U E	5.74
LTF	WEC	4.72
295109	WESTBROOK E	3.31
274687	WILL CNTY;4U	38.09
247611	X2-052	73.95
910542	X3-005 E	0.37
914641	Y2-103	26.29
915011	Y3-013 1	2.19
915021	Y3-013 2	2.19
915031	Y3-013 3	2.19
LTF	Z1-043	17.72
916502	Z1-106 E1	0.73
916504	Z1-106 E2	0.73
916512	Z1-107 E	1.52

916522	Z1-108 E	1.45
916651	Z1-127 1	0.96
916652	Z1-127 2	0.57
917711	Z2-114 C	0.08
917712	Z2-114 E	0.39
918051	AA1-018 C	1.47
918052	AA1-018 E	9.85
918972	AA1-116 E	1.48
918982	AA1-117 E	1.48
919221	AA1-146	10.63
919581	AA2-030	10.63
919591	AA2-035	75.55
920112	AA2-107 E	1.44
920272	AA2-123 E	1.44
930041	AB1-006 C	2.55
930042	AB1-006 E	17.04
930391	AB1-080	4.38
930481	AB1-089	38.91
930491	AB1-090	38.91
930501	AB1-091	40.61
930761	AB1-122 1	41.9
930771	AB1-122 2	42.8
931221	AB1-172	0.47
LTF	AB2-013	10.05
924471	AB2-096	24.97
925161	AB2-173	1.9
	L.	

925301	AB2-191 C	0.75
925302	AB2-191 E	0.66
925581	AC1-033 C	0.87
925582	AC1-033 E	5.85
926311	AC1-109 1	1.11
926321	AC1-109 2	1.11
926331	AC1-110 1	1.1
926341	AC1-110 2	1.1
926351	AC1-111 1	0.44
926361	AC1-111 2	0.44
926371	AC1-111 3	0.44
926381	AC1-111 4	0.44
926391	AC1-111 5	0.44
926401	AC1-111 6	0.44
927511	AC1-113 1	0.71
927522	AC1-113 2	0.71
926431	AC1-114	1.41
927451	AC1-142A 1	2.43
927461	AC1-142A 2	2.43
926701	AC1-153 C1	45.54
926711	AC1-153 C2	46.52
926702	AC1-153 E1	1.82
926712	AC1-153 E2	1.86
926821	AC1-168 C	0.71
926822	AC1-168 E	4.77
927531	AC1-185 1	0.41
<u> </u>	<u>. </u>	

927541 AC1-185 2 0.41 927551 AC1-185 3 0.41 927561 AC1-185 4 0.41 927571 AC1-185 5 0.41
927561 AC1-185 4 0.41
927571 AC1-185 5 0.41
927581 AC1-185 6 0.41
927591 AC1-185 7 0.41
927601 AC1-185 8 0.41
927091 AC1-204 1 42.04
927101 AC1-204 2 42.04
927201 AC1-214 C 1.28
927202 AC1-214 E 3.39