Generation Interconnection Feasibility Study Report

For

PJM Generation Interconnection Request Queue Position AE1-175

"Lightfoot 34.5 kV"

13.3 MW Capacity / 19.9 MW Energy

Introduction

This Feasibility Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 36.2, as well as the Feasibility Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is Virginia Electric and Power Company (VEPCO).

Preface

The intent of the Feasibility Study is to determine a plan, with high level estimated cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the IC. The IC may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the IC may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the Impact Study is performed.

PJM utilizes manufacturer models to ensure the performance of turbines is properly captured during the simulations performed for stability verification and, where applicable, for compliance with low voltage ride through requirements. Turbine manufacturers provide such models to their customers. The list of manufacturer models PJM has already validated is contained in Attachment B of Manual 14G. Manufacturer models may be updated from time to time, for various reasons such as to reflect changes to the control systems or to more accurately represent the capabilities turbines and controls which are currently available in the field. Additionally, as new turbine models are developed, turbine manufacturers provide such new models which must be used in the conduct of these studies. PJM needs adequate time to evaluate the new models in order to reduce delays to the System Impact Study process timeline for the Interconnection Customer as well as other Interconnection Customers in the study group. Therefore, PJM will require that any Interconnection Customer with a new manufacturer model must supply that model to PJM, along with a \$10,000 fully refundable deposit, no later than three (3) months prior to the starting date of the System Impact Study (See Section 4.3 for starting dates) for the Interconnection Request which shall specify the use of the new model. The Interconnection Customer will be required to submit a completed dynamic model study request form (Attachment B-1 of Manual 14G) in order to document the request for the study.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The IC is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by ITO, the costs may be included in the study.

General

The IC has proposed a new solar generating facility located in Williamsburg (James City County), Virginia. The installed facilities will have a capability of **19.9** MW with **13.3** MW of this output being recognized by PJM as Capacity. The proposed in-service date for the AE1-175 project is **10/23/2020**. This study does not imply an ITO commitment to the proposed inservice date.

Queue Number	AE1-175
Project Name	LIGHT FOOT 34.5 KV
Interconnection Customer	
State	Virginia
County	James City
Interconnected Transmission Owner	Dominion
MFO	19.9
MWE	19.9
MWC	13.3
Fuel	Solar
Basecase Study Year	2022

Point of Interconnection

The AE1-175 project will interconnect with the ITO transmission system via 34.5 kV Circuit #466 fed from Transformer #3 at Lightfoot Substation. See one line in **Attachment 1**.

Cost Summary

None

Transmission Owner Scope of Work

Attachment facilities and local upgrades (if required) along with terms and conditions to interconnect AE1-175 will be specified in a separate two party Interconnection Agreement (IA) between ITO and the IC as this project is considered FERC non-jurisdictional per the PJM Open Access Transmission Tariff (OATT). From the transmission system perspective, network impacts were identified as detailed below. The single line is shown below in Attachment 1.

Interconnection Customer Requirements

<u>Voltage Ride Through Requirements</u> - The Customer Facility shall be designed to remain in service (not trip) for voltages and times as specified for the Eastern Interconnection in Attachment 1 of NERC Reliability Standard PRC-024-1, and successor Reliability Standards, for both high and low voltage conditions, irrespective of generator size, subject to the permissive trip exceptions established in PRC-024-1 (and successor Reliability Standards).

<u>Frequency Ride Through Requirements</u> - The Customer Facility shall be designed to remain in service (not trip) for frequencies and times as specified in Attachment 2 of NERC Reliability Standard PRC-024-1, and successor Reliability Standards, for both high and low frequency condition, irrespective of generator size, subject to the permissive trip exceptions established in PRC-024-1 (and successor Reliability Standards).

<u>Reactive Power</u> - The Generation Interconnection Customer shall design its non-synchronous Customer Facility with the ability to maintain a power factor of at least 0.95 leading to 0.95 lagging measured at the generator's terminals.

Revenue Metering and SCADA Requirements

PJM Requirements

The IC will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Sections 24.1 and 24.2.

Meteorological Data Reporting Requirement

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Temperature (degrees Fahrenheit)
- Atmospheric pressure (hectopascals)
- Irradiance
- Forced outage data

Network Impacts:

Queue Projects AE1-175 was evaluated as a 19.9 MW (Capacity 13.3 MW) injection into the Lightfoot 34.5kV Substation bus in the ITO area. Project AE1-175 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AE1-175 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Load Flow Analysis - 2022

Generator Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed, which will study all overload conditions associated with the overloaded element(s) identified.

None

Short Circuit Analysis

Short Circuit

(Summary of impacted circuit breakers)

None

Attachment 1.

System Configuration