

Generation Interconnection Feasibility Study Report for

Queue Project AE2-298

HAVILAND - N. VAN WERT 69 KV

30 MW Capacity / 50 MW Energy

Table of Contents

1 I	Preface	4
2 (General	5
2.1	Primary Point of Interconnection	6
2.2	2 Cost Summary	6
3 7	Transmission Owner Scope of Work	7
4	Attachment Facilities	7
5 I	Direct Connection Cost Estimate	7
6 1	Non-Direct Connection Cost Estimate	7
7 I	Incremental Capacity Transfer Rights (ICTRs)	8
8 9	Schedule	8
9 I	Interconnection Customer Requirements	8
10	Revenue Metering and SCADA Requirements	9
10.	.1 PJM Requirements	9
10.	.2 AEP Requirements	9
11	Network Impacts – Option 1	10
12	Generation Deliverability	12
13	Multiple Facility Contingency	12
14	Contribution to Previously Identified Overloads	12
15	Potential Congestion due to Local Energy Deliverability	12
16	System Reinforcements	14
17	Flow Gate Details	15
17.	.1 Index 1	16
17.	.2 Index 2	18
18	Affected Systems	20
18.	.1 LG&E	20
18.	.2 MISO	20
18.	.3 TVA	20
18.	.4 Duke Energy Progress	20
18.	.5 NYISO	20
19	Contingency Descriptions	21
20	Short Circuit	25

20.1	1 Secondary Point of Interconnection	
21	Network Impacts – Option 2	27
22	Generation Deliverability	
23	Multiple Facility Contingency	29
24	Contribution to Previously Identified Overloads	29
25	Potential Congestion due to Local Energy Deliverability	29
26	Flow Gate Details	
26.1		32
26.2	2 Index 2	34
27	Affected Systems	36
27.1		
27.2	2 MISO	36
27.3	3 TVA	36
27.4	4 Duke Energy Progress	36
27.5		
27.6	6 Paulding-Putnam Co-Op	36
28	Contingency Descriptions	37
29	Short Circuit	40

1 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

PJM utilizes manufacturer models to ensure the performance of turbines is properly captured during the simulations performed for stability verification and, where applicable, for compliance with low voltage ride through requirements. Turbine manufacturers provide such models to their customers. The list of manufacturer models PJM has already validated is contained in Attachment B of Manual 14G. Manufacturer models may be updated from time to time, for various reasons such as to reflect changes to the control systems or to more accurately represent the capabilities turbines and controls which are currently available in the field. Additionally, as new turbine models are developed, turbine manufacturers provide such new models which must be used in the conduct of these studies. PJM needs adequate time to evaluate the new models in order to reduce delays to the System Impact Study process timeline for the Interconnection Customer as well as other Interconnection Customers in the study group. Therefore, PJM will require that any Interconnection Customer with a new manufacturer model must supply that model to PJM, along with a \$10,000 fully refundable deposit, no later than three (3) months prior to the starting date of the System Impact Study (See Section 4.3 for starting dates) for the Interconnection Request which shall specify the use of the new model. The Interconnection Customer will be required to submit a completed dynamic model study request form (Attachment B-1 of Manual 14G) in order to document the request for the study.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

2 General

The Interconnection Customer has proposed to install PJM project # AE2-298, a Solar generating facility located in Van Wert County, Ohio (See Figure 2). The installed facilities will have a total capability of 50 MW with 30 MW of this output being recognized by PJM as Capacity. The Primary Point of Interconnection will be to AEP's Haviland – North Van Wert 69 kV section of the Haviland – Van Wert 69 kV circuit (See Figure 1). The Secondary Point of Interconnection will be to the Cavett Switch – Convoy 69 kV line (See Figure 3).

The proposed in-service date for this project is December 31, 2021. This study does not imply AEP's commitment to this in-service date.

The objective of this Feasibility Study is to determine budgetary cost estimates and approximate construction timelines for identified transmission facilities required to connect the proposed generating facilities to the AEP transmission system. These reinforcements include the Attachment Facilities, Local Upgrades, and Network Upgrades required for maintaining the reliability of the AEP transmission system.

The Feasibility Study includes Short Circuit and Peak Load steady state power flow analyses. The conduct of power flow studies at other load levels, stability analysis, and coordination with non-PJM Transmission Planners, as required under the PJM planning process, is not performed during the Generation Interconnection Feasibility Study phase of the PJM study process. Additional reinforcement requirements for this Interconnection Request may be defined during the conduct of these additional analyses which shall be performed following execution of the System Impact Study agreement.

Queue Number	AE2-298
Project Name	HAVILAND-N. VAN WERT 69 KV
State	Ohio
County	Van Wert
Transmission Owner	AEP
MFO	50
MWE	50
MWC	30
Fuel	Solar
Base case Study Year	2022

2.1 Primary Point of Interconnection

AE2-298 will interconnect with the AEP transmission system via a new station cut into the Haviland – North Van Wert 69 kV section of the Haviland – Van Wert 69kV circuit.

To accommodate the interconnection on the Haviland – North Van Wert 69 kV section of the Haviland – Van Wert 69kV circuit, a new three (3) circuit breaker 69 kV switching station physically configured in a breaker and half bus arrangement but operated as a ring-bus will be constructed (see Figure 1). Installation of associated protection and control equipment, 69 kV line risers, SCADA, and 69 kV revenue metering will also be required. AEP reserves the right to specify the final acceptable configuration considering design practices, future expansion, and compliance requirements.

2.2 Cost Summary

The AE2-298 project will be responsible for the following costs:

Based upon the results of this Feasibility Study, the construction of the 50 MW (30 MW Capacity) Solar generating facility of the Interconnection Customer (PJM Project # AE2-298) will require the following additional interconnection charges. This plan of service will interconnect the proposed Solar generating facility in a manner that will provide operational reliability and flexibility to both the AEP system and the the Interconnection Customer generating facility.

Description	Total Cost
Attachment Facilities	\$250,000
Direct Connection Network Upgrade	\$4,350,000
Non Direct Connection Network Upgrades	\$1,100,000
Total Costs	\$5,700,000

In addition, the AE2-298 project may be responsible for a contribution to the following costs

Description	Total Cost
System Upgrades	\$162,400

Cost allocations for these upgrades will be provided in the System Impact Study Report.

3 Transmission Owner Scope of Work

4 Attachment Facilities

The total preliminary cost estimate for the Attachment work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
69 kV Revenue Metering	\$250,000
Total Attachment Facility Costs	\$250,000

5 Direct Connection Cost Estimate

The total preliminary cost estimate for the Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Construct a new three (3) circuit breaker 69 kV switching station physically	\$4,350,000
configured in a breaker and half bus arrangement but operated as a ring-	
bus (See Figure 1). Installation of associated protection and control	
equipment, 69 kV line risers and SCADA will also be required.	
Total Direct Connection Facility Costs	\$4,350,000

6 Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Upgrade line protection and controls at the Haviland 69 kV substation.	\$200,000
Upgrade line protection and controls at the Van Wert 69 kV substation.	\$200,000
Haviland – North Van Wert 69 kV T-Line Cut In	\$700,000
Total Non-Direct Connection Facility Costs	\$1,100,000

7 Incremental Capacity Transfer Rights (ICTRs)

Will be determined at a later study phase

8 Schedule

It is anticipated that the time between receipt of executed Agreements and Commercial Operation may range from 12 to 18 months if no line work is required. If line work is required, construction time would generally be between 24 to 36 months after signing Agreement execution.

9 Interconnection Customer Requirements

It is understood that the Interconnection Customer is responsible for all costs associated with this interconnection. The costs above are reimbursable to AEP. The cost of the Interconnection Customer's generating plant and the costs for the line connecting the generating plant to the Haviland – North Van Wert 69 kV line are not included in this report; these are assumed to be the Interconnection Customer's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for American Electric Power to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

Requirement from the PJM Open Access Transmission Tariff:

- An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a
 proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW
 shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of
 Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for
 additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 AEP Requirements

The Interconnection Customer will be required to comply with all AEP Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "Requirements for Connection of New Facilities or Changes to Existing Facilities Connected to the AEP Transmission System" document located at the following link:

http://www.pjm.com/~/media/planning/plan-standards/private-aep/aep-interconnection-requirements.ashx

11 Network Impacts – Option 1

The Queue Project AE2-298 was evaluated as a 50 MW (Capacity 30 MW) injection at the Haviland – North Van Wert 69 kV line in the AEP area. Project AE2-298 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AE2-298 was studied with a commercial probability of 53%. Potential network impacts were as follows:

Summer Peak Load Flow

12 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

13 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
7385228	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P4_#6533_05E LIMA 138_A	breaker	332.0	91.96	99.57	DC	25.26
7386669	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P7-1_#6676	tower	332.0	93.37	101.11	DC	25.68

14 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
738524 5	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P4_#10140_05ALLEN 138 H	breake r	167.0	106.01	110.61	DC	7.68
738658 7	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P7-1_#11065	tower	167.0	106.01	110.61	DC	7.68
738658 8	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P7-1_#10895	tower	167.0	105.96	110.56	DC	7.68
738450 2	24695 0	05TIMBSS	AEP	24338 3	05TILLM A	AEP	1	AEP_P2- 2_#10084_05HAVILN 138_1	bus	332.0	104.81	108.83	DC	13.34
738522 7	24695 0	05TIMBSS	AEP	24338 3	05TILLM A	AEP	1	AEP_P4_#10084_05HAVIL N 138_I	breake r	332.0	104.81	108.83	DC	13.34

15 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
7385762	243017	05HAVILN	AEP	242989	05E LIMA	AEP	1	AEP_P1- 2_#7501	operation	220.0	125.71	135.55	DC	21.64
7385763	243017	05HAVILN	AEP	242989	05E LIMA	AEP	1	Base Case	operation	167.0	100.66	107.36	DC	11.19
7386271	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P1- 2 #5227	operation	332.0	91.89	99.48	DC	25.2

16 System Reinforcements

ID	Index	Facility	Upgrade Description	Cost
7385227,7386669,73 84502,7385228	1	05TIMBSS 138.0 kV - 05TILLMA 138.0 kV Ckt 1	AEP AEPO0011a (208): Upgrade "Sub Cond 1-1233.6 KCM ACSR/TW (38/19)" riser at Timber Switch Project Type: FAC Cost: \$100,000 Time Estimate: 12-18 Months	\$100,000
7386588,7385245,73 86587	2	05NDELPH 138.0 kV - 05E SIDE 138.0 kV Ckt 1	AEP AEP_AE1_REF_r0028 (142): A sag study will be required on the 15.6 miles of ACSR ~ 397.5 ~ 30/7 ~ LARK - Conductor to mitigate the overload. Depending on the sag study results, the cost for this upgrade is expected to be between \$62,400 (no remediation required, just sag study) and \$23.4 million (complete line reconductor/rebuild).New rating after sag study: S/N: 167 S/E: 245. Time Estimate: a) Sag Study: 12-18 months b) Rebuild: The standard time required for construction differs from state to state. An approximate construction time would be 24 to 36 months after signing an interconnection agreement. Project Type: FAC Cost: \$62,400 Time Estimate: 6-12 Months	\$62,400
			TOTAL COST	\$162,400

17 Flow Gate Details

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

17.1 Index 1

ID	FROM	FROM	FRO	TO	TO BUS	TO	CK	CONT NAME	Type	Ratin	PRE	POST	AC D	MW
	BUS#	BUS	М	BUS#		BUS	Т			g	PROJECT	PROJECT	С	IMPAC
			BUS			ARE	ID			MVA	LOADIN	LOADIN		T
			AREA			Α					G %	G %		
738522	24695	05TIMBS	AREA AEP	24338	05TILLM	A AEP	1	AEP_P4_#10084_05HAVIL	breake	332.0	G %	G %	DC	13.34

Bus #	Bus	MW Impact
246953	05TIMB G C	3.18
247607	V1-011 C	1.26
247911	05TIMB G E	105.07
247959	V1-011 E	69.15
926811	AC1-167 C O1	8.17
926812	AC1-167 E O1	3.96
926901	AC1-176 C	6.61
926902	AC1-176 E	44.45
934741	AD1-101 C O1	2.16
934742	AD1-101 E O1	3.53
934901	AD1-119 C O1	3.73
934902	AD1-119 E O1	6.09
940031	AE1-245 C	15.5
940032	AE1-245 E	103.72
942801	AE2-298 C O1	8.0
942802	AE2-298 E O1	5.34
943181	AE2-322 C	9.79
943182	AE2-322 E	4.79
BLUEG	BLUEG	0.46
CALDERWOOD	CALDERWOOD	0.03
CANNELTON	CANNELTON	0.03
CATAWBA	CATAWBA	0.01
CBM-N	CBM-N	0.02
СНЕОАН	СНЕОАН	0.03
CHILHOWEE	CHILHOWEE	0.01
COFFEEN	COFFEEN	0.07
COTTONWOOD	COTTONWOOD	0.19
DUCKCREEK	DUCKCREEK	0.17
EDWARDS	EDWARDS	0.08
ELMERSMITH	ELMERSMITH	0.05
FARMERCITY	FARMERCITY	0.05
G-007A	G-007A	0.04
GIBSON	GIBSON	0.03
HAMLET	HAMLET	0.02
MECS	MECS	0.19
NEWTON	NEWTON	0.18
NYISO	NYISO	0.07
PRAIRIE	PRAIRIE	0.32
SANTEETLA	SANTEETLA	0.01
SMITHLAND	SMITHLAND	0.02
TATANKA	TATANKA	0.09
TILTON	TILTON	0.09

Bus #	Bus	MW Impact
TRIMBLE	TRIMBLE	0.05
TVA	TVA	0.14
UNIONPOWER	UNIONPOWER	0.06
VFT	VFT	0.1

17.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
7386588	243051	05NDELPH	AEP	242991	05E SIDE	AEP	1	AEP_P7- 1 #10895	tower	167.0	105.96	110.56	DC	7.68

Bus #	Bus	MW Impact
247521	T-131 C	2.68
247911	05TIMB G E	11.0
247925	T-131 E	88.09
247959	V1-011 E	7.92
926811	AC1-167 C O1	3.23
926812	AC1-167 E O1	1.57
926861	AC1-173 C	7.27
926862	AC1-173 E	48.45
926901	AC1-176 C	0.69
926902	AC1-176 E	4.65
934741	AD1-101 C O1	4.14
934742	AD1-101 E O1	6.76
934901	AD1-119 C O1	2.04
934902	AD1-119 E O1	3.32
940031	AE1-245 C	1.78
940032	AE1-245 E	11.88
942801	AE2-298 C O1	4.61
942802	AE2-298 E O1	3.07
943181	AE2-322 C	3.87
943182	AE2-322 E	1.89
BLUEG	BLUEG	0.09
CALDERWOOD	CALDERWOOD	0.01
CARR	CARR	0.01
CATAWBA	CATAWBA	0.01
CBM-W1	CBM-W1	0.5
CBM-W2	CBM-W2	0.47
CHEOAH	CHEOAH	0.01
CHILHOWEE	CHILHOWEE	0.0
CIN	CIN	0.07
G-007	G-007	0.04
HAMLET	HAMLET	0.02
IPL	IPL	0.04
MEC	MEC	0.26
MECS	MECS	0.45
O-066	O-066	0.25
RENSSELAER	RENSSELAER	0.01
SANTEETLA	SANTEETLA	0.0
TRIMBLE	TRIMBLE	0.01
TVA	TVA	0.01
WEC	WEC	0.05

Affected Systems

18 Affected Systems

18.1 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

18.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

18.3 TVA

TVA Impacts to be determined during later study phases (as applicable).

18.4 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

18.5 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

19 Contingency Descriptions

Contingency Name	Contingency Definition	
AEP_P7-1_#6676	CONTINGENCY 'AEP_P7-1_#6676' /(MODI OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 242991 TO BUS 243051 CKT 1 05NDELPH 138 1 OPEN BRANCH FROM BUS 242991 TO BUS 243108 CKT 1 05STRLN1 138 1 END	FIED) / 242989 05E LIMA 138 243017 / 242991 05E SIDE 138 243051 / 242991 05E SIDE 138 243108
AEP_P1-2_#7501	CONTINGENCY 'AEP_P1-2_#7501' OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 O5TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 O5TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 O5TILLMAN 34.5 1 OPEN BRANCH FROM BUS 246264 TO BUS 247877 CKT 1 O5ST.RD14 SS34.5 1 END	/ 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265 / 246264 05ST R14 8 34.5 247877
AEP_P2-2_#10084_05HAVILN 138_1	CONTINGENCY 'AEP_P2-2_#10084_05HAVILN 138_1' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 243017 TO BUS 243168 CKT 1 05HAVILND1 69.0 1 END	/ 242989 05E LIMA 138 243017 / 243017 05HAVILN 138 243168
AEP_P4_#10140_05ALLEN 138_H	CONTINGENCY 'AEP_P4_#10140_05ALLEN 138_H' OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 OPEN BRANCH FROM BUS 246264 TO BUS 247877 CKT 1 05ST.RD14 SS34.5 1 END	/ 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265 / 246264 05ST R14 8 34.5 247877

Contingency Name	Contingency Definition	
AEP_P7-1_#10895	CONTINGENCY 'AEP_P7-1_#10895' OPEN BRANCH FROM BUS 243242 TO BUS 243877 CKT 1 05DAWKNS 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243330 CKT 1 05LINCOL 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243877 TO BUS 243342 CKT 1 05MILAN 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 END	/ 243242 05ALLEN 138 243877 / 243242 05ALLEN 138 243330 / 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243877 05DAWKNS 138 243342 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265
Base Case		
AEP_P1-2_#5227	CONTINGENCY 'AEP_P1-2_#5227' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 END	/ 242989 05E LIMA 138 243017
AEP_P4_#10084_05HAVILN 138_I	CONTINGENCY 'AEP_P4_#10084_05HAVILN 138_I' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 243017 TO BUS 243168 CKT 1 05HAVILND1 69.0 1 END	/ 242989 05E LIMA 138 243017 / 243017 05HAVILN 138 243168

Contingency Name	Contingency Definition	
AEP_P4_#6533_05E LIMA 138_A	CONTINGENCY 'AEP_P4_#6533_05E LIMA 138_A' OPEN BRANCH FROM BUS 245771 TO BUS 243059 CKT 1 05NFINDL 138 1 OPEN BRANCH FROM BUS 245775 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 245771 TO BUS 245764 CKT 21 FINDLA 69.0 Z1 OPEN BRANCH FROM BUS 245775 TO BUS 245766 CKT 1 05N WOODCK 69.0 1 OPEN BRANCH FROM BUS 245771 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245775 TO BUS 245765 CKT 1 05N WOODCK 34.5 1 OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 242989 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 243059 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 245763 TO BUS 245766 CKT 1 WOODCK 69.0 1 OPEN BRANCH FROM BUS 245788 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245788 TO BUS 245765 CKT 1 WOODCK 34.5 1 OPEN BRANCH FROM BUS 245788 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245726 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245726 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245726 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 REMOVE SWSHUNT FROM BUS 245772	/ 245771 05NFIND EQ 999 243059 / 245775 05NWOODCEQ 999 243067 / 245771 05NFIND EQ 999 245764 05N / 245775 05NWOODCEQ 999 245766 / 245771 05NFIND EQ 999 245772 / 245775 05NWOODCEQ 999 245765 / 242989 05E LIMA 138 243017 / 242989 05E LIMA 138 243067 / 243059 05NFINDL 138 243067 / 245763 05N BLUFFT 69.0 245766 05N / 245738 05DOWCHEM2 34.5 245772 / 245788 05DTR 34.5 245765 05N / 245726 05GRIFTHSS 34.5 245772
AEP_P7-1_#11065	CONTINGENCY 'AEP_P7-1_#11065' OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 END	/ 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265

Short Circuit

20 Short Circuit

None

20.1 Secondary Point of Interconnection

AE2-298 will interconnect with the AEP transmission system via a new station cut into the AEP-owned portion of the Cavett Switch – Convoy 69kV line.

To accommodate the interconnection on the AEP-owned portion of the Cavett Switch – Convoy 69kV line, a new three (3) circuit breaker 69 kV switching station physically configured in a breaker and half bus arrangement but operated as a ring-bus will be constructed (see Figure 3). Installation of associated protection and control equipment, 69 kV line risers, SCADA, and 69 kV revenue metering will also be required. AEP reserves the right to specify the final acceptable configuration considering design practices, future expansion, and compliance requirements.

It should be noted that addition of an active source on what is now a radial line feeding only loads, may require more than typical upgrades to switching equipment and Protection and Control systems on the AEP facilities feeding the radial line. Detailed review of P&C needs occurs in the Facilities Study phase.

21 Network Impacts – Option 2

The Queue Project AE2-298 was evaluated as a 50.0 MW (Capacity 30.0 MW) injection to the Cavett Switch – Convoy 69kV line. Project AE2-298 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AE2-298 was studied with a commercial probability of 0.53. Potential network impacts were as follows:

Summer Peak Load Flow

22 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

23 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

	ID	FROM	FROM	FROM	то	TO BUS	то	СКТ	CONT NAME	Туре	Rating	PRE	POST	AC DC	MW
		BUS#	BUS	BUS AREA	BUS#		BUS AREA	ID			MVA	PROJECT LOADING %	PROJECT LOADING %		IMPACT
73	85228	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P4_#6533_05E LIMA 138_A	breaker	332.0	91.96	100.86	DC	29.56
73	86669	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P7-1_#6676	tower	332.0	93.37	102.37	DC	29.89

24 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
738524 5	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P4_#10140_05ALLEN 138 H	breake r	167.0	106.01	109.44	DC	5.73
738658 7	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P7-1_#11065	tower	167.0	106.01	109.44	DC	5.73
738658 8	24305 1	05NDELP H	AEP	24299 1	05E SIDE	AEP	1	AEP_P7-1_#10895	tower	167.0	105.96	109.39	DC	5.73
738450 2	24695 0	05TIMBSS	AEP	24338 3	05TILLM A	AEP	1	AEP_P2- 2_#10084_05HAVILN 138_1	bus	332.0	104.81	113.6	DC	29.18
738522 7	24695 0	05TIMBSS	AEP	24338 3	05TILLM A	AEP	1	AEP_P4_#10084_05HAVIL N 138_I	breake r	332.0	104.81	113.6	DC	29.18

25 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
7385762	243017	05HAVILN	AEP	242989	05E LIMA	AEP	1	AEP_P1- 2_#7501	operation	220.0	125.71	137.23	DC	25.34
7385763	243017	05HAVILN	AEP	242989	05E LIMA	AEP	1	Base Case	operation	167.0	100.67	108.51	DC	13.1
7386271	246950	05TIMBSS	AEP	243383	05TILLMA	AEP	1	AEP_P1- 2 #5227	operation	332.0	91.89	100.78	DC	29.52

26 Flow Gate Details

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

26.1 Index 1

ID	FROM	FROM	FRO	TO	TO BUS	TO	CK	CONT NAME	Type	Ratin	PRE	POST	AC D	MW
	BUS#	BUS	M	BUS#		BUS	Т			g	PROJECT	PROJECT	С	IMPAC
			BUS			ARE	ID			MVA	LOADIN	LOADIN		Т
			AREA			Α					G %	G %		
738522	24695	05TIMBS	AREA AEP	24338	05TILLM	A AEP	1	AEP_P4_#10084_05HAVIL	breake	332.0	G %	G %	DC	29.18

Bus #	Bus	MW Impact		
246953	05TIMB G C	3.18		
247607	V1-011 C	1.26		
247911	05TIMB G E	105.07		
247959	V1-011 E	69.15		
926811	AC1-167 C O1	8.17		
926812	AC1-167 E O1	3.96		
926901	AC1-176 C	6.61		
926902	AC1-176 E	44.45		
934741	AD1-101 C O1	2.16		
934742	AD1-101 E O1	3.53		
934901	AD1-119 C O1	3.73		
934902	AD1-119 E O1	6.09		
940031	AE1-245 C	15.5		
940032	AE1-245 E	103.72		
942801	AE2-298 C O2	17.51		
942802	AE2-298 E O2	11.67		
943181	AE2-322 C	9.79		
943182	AE2-322 E	4.79		
BLUEG	BLUEG	0.46		
CALDERWOOD	CALDERWOOD	0.03		
CANNELTON	CANNELTON	0.03		
CATAWBA	CATAWBA	0.01		
CBM-N	CBM-N	0.02		
СНЕОАН	СНЕОАН	0.03		
CHILHOWEE	CHILHOWEE	0.01		
COFFEEN	COFFEEN	0.07		
COTTONWOOD	COTTONWOOD	0.19		
DUCKCREEK	DUCKCREEK	0.17		
EDWARDS	EDWARDS	0.08		
ELMERSMITH	ELMERSMITH	0.05		
FARMERCITY	FARMERCITY	0.05		
G-007A	G-007A	0.04		
GIBSON	GIBSON	0.03		
HAMLET	HAMLET	0.02		
MECS	MECS	0.19		
NEWTON	NEWTON	0.18		
NYISO	NYISO	0.07		
PRAIRIE	PRAIRIE	0.32		
SANTEETLA	SANTEETLA	0.01		
SMITHLAND	SMITHLAND	0.02		
TATANKA	TATANKA	0.09		
TILTON	TILTON	0.09		

Bus #	Bus	MW Impact	
TRIMBLE	TRIMBLE	0.05	
TVA	TVA	0.14	
UNIONPOWER	UNIONPOWER	0.06	
VFT	VFT	0.1	

26.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
7386588	243051	05NDELPH	AEP	242991	05E SIDE	AEP	1	AEP_P7- 1 #10895	tower	167.0	105.96	109.39	DC	5.73

Bus #	Bus	MW Impact		
247521	T-131 C	2.68		
247911	05TIMB G E	11.0		
247925	T-131 E	88.09		
247959	V1-011 E	7.92		
926811	AC1-167 C O1	3.23		
926812	AC1-167 E O1	1.57		
926861	AC1-173 C	7.27		
926862	AC1-173 E	48.45		
926901	AC1-176 C	0.69		
926902	AC1-176 E	4.65		
934741	AD1-101 C O1	4.14		
934742	AD1-101 E O1	6.76		
934901	AD1-119 C O1	2.04		
934902	AD1-119 E O1	3.32		
940031	AE1-245 C	1.78		
940032	AE1-245 E	11.88		
942801	AE2-298 C O2	3.44		
942802	AE2-298 E O2	2.29		
943181	AE2-322 C	3.87		
943182	AE2-322 E	1.89		
BLUEG	BLUEG	0.09 0.01		
CALDERWOOD	CALDERWOOD			
CARR	CARR	0.01		
CATAWBA	CATAWBA	0.01 0.5		
CBM-W1	CBM-W1			
CBM-W2	CBM-W2	0.47		
CHEOAH	CHEOAH	0.01		
CHILHOWEE	CHILHOWEE	0.0		
CIN	CIN	0.07		
G-007	G-007	0.04		
HAMLET	HAMLET	0.02		
IPL	IPL	0.04		
MEC	MEC	0.26		
MECS	MECS	0.45		
O-066	O-066	0.25		
RENSSELAER	RENSSELAER	0.01		
SANTEETLA	SANTEETLA	0.0		
TRIMBLE	TRIMBLE	0.01		
TVA	TVA	0.01		
WEC	WEC	0.05		

Affected Systems

27 Affected Systems

27.1 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

27.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

27.3 TVA

TVA Impacts to be determined during later study phases (as applicable).

27.4 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

27.5 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

27.6 Paulding-Putnam Co-Op

The proposed Option 2 connection is located on a radial line feeding a Paulding-Putnam Delivery Point. If this point of interconnection is selected, Paulding-Putnam would need to determine impacts on their facilities during later study phases. We will also need to coordinate a Kick off Meeting between IC, PJM, AEP, and Paulding-Putnam.

28 Contingency Descriptions

Contingency Name	Contingency Definition				
AEP_P7-1_#6676	CONTINGENCY 'AEP_P7-1_#6676' /(MODIF OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 242991 TO BUS 243051 CKT 1 05NDELPH 138 1 OPEN BRANCH FROM BUS 242991 TO BUS 243108 CKT 1 05STRLN1 138 1 END	FIED) / 242989 05E LIMA 138 243017 / 242991 05E SIDE 138 243051 / 242991 05E SIDE 138 243108			
AEP_P1-2_#7501	CONTINGENCY 'AEP_P1-2_#7501' OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 OPEN BRANCH FROM BUS 246264 TO BUS 247877 CKT 1 05ST.RD14 SS34.5 1 END	/ 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265 / 246264 05ST R14 8 34.5 247877			
AEP_P2-2_#10084_05HAVILN 138_1	CONTINGENCY 'AEP_P2-2_#10084_05HAVILN 138_1' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 243017 TO BUS 243168 CKT 1 05HAVILND1 69.0 1 END	/ 242989 05E LIMA 138 243017 / 243017 05HAVILN 138 243168			
AEP_P4_#10140_05ALLEN 138_H	CONTINGENCY 'AEP_P4_#10140_05ALLEN 138_H' OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 OPEN BRANCH FROM BUS 246264 TO BUS 247877 CKT 1 05ST.RD14 SS34.5 1 END	/ 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265 / 246264 05ST R14 8 34.5 247877			
AEP_P7-1_#10895	CONTINGENCY 'AEP_P7-1_#10895' OPEN BRANCH FROM BUS 243242 TO BUS 243877 CKT 1 05DAWKNS 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243330 CKT 1 05LINCOL 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243877 TO BUS 243342 CKT 1 05MILAN 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1	/ 243242 05ALLEN 138 243877 / 243242 05ALLEN 138 243330 / 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243877 05DAWKNS 138 243342 / 243383 05TILLMA 138 246265			

	05TILLMAN 34.5 1 END			
Base Case				
AEP_P1-2_#5227	CONTINGENCY 'AEP_P1-2_#5227' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 / 242989 05E LIMA 138 243017 05HAVILN 138 1 END			
AEP_P4_#10084_05HAVILN 138_I	CONTINGENCY 'AEP_P4_#10084_05HAVILN 138_I' OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 243017 TO BUS 243168 CKT 1 05HAVILND1 69.0 1 END	/ 242989 05E LIMA 138 243017 / 243017 05HAVILN 138 243168		
AEP_P4_#6533_05E LIMA 138_A	CONTINGENCY 'AEP_P4_#6533_05E LIMA 138_A' OPEN BRANCH FROM BUS 245771 TO BUS 243059 CKT 1 05NFINDL 138 1 OPEN BRANCH FROM BUS 245775 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 245771 TO BUS 245764 CKT 21 FINDLA 69.0 Z1 OPEN BRANCH FROM BUS 245775 TO BUS 245766 CKT 1 05N WOODCK 69.0 1 OPEN BRANCH FROM BUS 245771 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245775 TO BUS 245765 CKT 1 05N WOODCK 34.5 1 OPEN BRANCH FROM BUS 242989 TO BUS 243017 CKT 1 05HAVILN 138 1 OPEN BRANCH FROM BUS 242989 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 243059 TO BUS 243067 CKT 1 05NWOODC 138 1 OPEN BRANCH FROM BUS 245763 TO BUS 245766 CKT 1 WOODCK 69.0 1 OPEN BRANCH FROM BUS 245788 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 OPEN BRANCH FROM BUS 245788 TO BUS 245765 CKT 1 WOODCK 34.5 1 OPEN BRANCH FROM BUS 245788 TO BUS 245772 CKT 1 05NFINDLY1 34.5 1 REMOVE SWSHUNT FROM BUS 245772 END	/ 245771 05NFIND EQ 999 243059 / 245775 05NWOODCEQ 999 243067 / 245771 05NFIND EQ 999 245764 05N / 245775 05NWOODCEQ 999 245766 / 245771 05NFIND EQ 999 245772 / 245775 05NWOODCEQ 999 245765 / 245775 05NWOODCEQ 999 245765 / 242989 05E LIMA 138 243017 / 242989 05E LIMA 138 243067 / 243059 05NFINDL 138 243067 / 245763 05N BLUFFT 69.0 245766 05N / 245738 05DOWCHEM2 34.5 245772 / 245788 05DTR 34.5 245765 05N / 245726 05GRIFTHSS 34.5 245772		
AEP_P7-1_#11065	CONTINGENCY 'AEP_P7-1_#11065' OPEN BRANCH FROM BUS 243242 TO BUS 247864 CKT 1 05LOGTOWN 138 1 OPEN BRANCH FROM BUS 243242 TO BUS 243383 CKT 1 05TILLMA 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246950 CKT 1 05TIMBSS 138 1 OPEN BRANCH FROM BUS 243383 TO BUS 246265 CKT 1 05TILLMAN 34.5 1 END	/ 243242 05ALLEN 138 247864 / 243242 05ALLEN 138 243383 / 243383 05TILLMA 138 246950 / 243383 05TILLMA 138 246265		

Short Circuit

29 Short Circuit

None