

Generation Interconnection Feasibility Study Report for

Queue Project AF1-298

DESOTO 345 KV

84 MW Capacity / 200 MW Energy

Table of Contents

1	Pr	efaceeface	4
2	Ge	neral	6
2	.1	Point of Interconnection	7
2	.2	Cost Summary	7
3	Tr	ansmission Owner Scope of Work	8
4	At	tachment Facilities	8
5	Di	rect Connection Cost Estimate	8
6	No	on-Direct Connection Cost Estimate	8
7	Inc	cremental Capacity Transfer Rights (ICTRs)	9
8	Sc	hedule	9
9	Int	terconnection Customer Requirements	9
10		Revenue Metering and SCADA Requirements	9
1	0.1	PJM Requirements	9
1	0.2	AEP Requirements	9
11		Network Impacts	10
12		Generation Deliverability	12
13		Multiple Facility Contingency	12
14		Contribution to Previously Identified Overloads	12
15		Potential Congestion due to Local Energy Deliverability	12
16		System Reinforcements	14
17		Flow Gate Details	15
1	7.1	Index 1	16
1	7.2	Index 2	19
1	7.3	Index 3	21
18		Affected Systems	24
1	8.1	LG&E	24
1	8.2	MISO	24
1	8.3	TVA	24
1	8.4	Duke Energy Progress	24
1	8.5	NYISO	24
19		Contingency Descriptions	25

1 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

An Interconnection Customer with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

PJM utilizes manufacturer models to ensure the performance of turbines is properly captured during the simulations performed for stability verification and, where applicable, for compliance with low voltage ride through requirements. Turbine manufacturers provide such models to their customers. The list of manufacturer models PJM has already validated is contained in Attachment B of Manual 14G. Manufacturer models may be updated from time to time, for various reasons such as to reflect changes to the control systems or to more accurately represent the capabilities turbines and controls which are currently available in the field. Additionally, as new turbine models are developed, turbine manufacturers provide such new models which must be used in the conduct of these studies. PJM needs adequate time to evaluate the new models in order to reduce delays to the System Impact Study process timeline for the Interconnection Customer as well as other Interconnection Customers in the study group. Therefore, PJM will require that any Interconnection Customer with a new manufacturer model must supply that model to PJM, along with a \$10,000 fully refundable deposit, no later than three (3) months prior to the starting date of the System Impact Study (See Section 4.3 for starting dates) for the Interconnection Request which shall specify the use of the new model. The Interconnection Customer will be required to submit a completed dynamic model study request form (Attachment B-1 of Manual 14G) in order to document the request for the study.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

2 General

The Interconnection Customer (IC), has proposed a Solar generating facility located in Delaware County, Indiana. The installed facilities will have a total capability of 200 MW with 84 MW of this output being recognized by PJM as Capacity. The point of interconnection for the solar generating facility will be a direct connection to AEP's Desoto 345 kV substation. The proposed in-service date for this project is 10/31/2023. This study does not imply a TO commitment to this in-service date.

Queue Number	AF1-298
Project Name	DESOTO 345 KV
State	Indiana
County	Delaware
Transmission Owner	AEP
MFO	200
MWE	200
MWC	84
Fuel	Solar
Basecase Study Year	2023

2.1 Point of Interconnection

AF1-298 will interconnect with the AEP transmission system at the Desoto 345 kV station. AF1-298 will share the Point of Interconnection at the Desoto 345 kV station with previous queue positions AE1-209/210. As shown in Figure 1, the shared facilities will include much of the generator lead.

Note: It is assumed that the 345 kV revenue metering system, gen lead, and Protection & Control Equipment that will be installed for AE1-209/210 will be adequate for the additional facility connection requested in AF1-298. Depending on the timing of the completion of the AF1-298 interconnection construction relative to the AE1-209/210 completion, there may (or may not) be a need to review and revise relay settings for the increased generation and configuration change associated with AF1-298.

2.2 Cost Summary

The AF1-298 project will be responsible for the following costs:

Description	Total Cost
Attachment Facilities	\$0
Direct Connection Network Upgrade	\$0
Non Direct Connection Network Upgrades	\$0
Total Costs	\$0

In addition, the AF1-298 project may be responsible for a contribution to the following costs

Description	Total Cost
System Upgrades	\$30,570,000

Cost allocations for these upgrades will be provided in the System Impact Study Report.

3 Transmission Owner Scope of Work

4 Attachment Facilities

The total preliminary cost estimate for the Attachment work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Total Attachment Facility Costs	\$0

5 Direct Connection Cost Estimate

The total preliminary cost estimate for the Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Total Direct Connection Facility Costs	\$0

6 Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Total Non-Direct Connection Facility Costs	\$0

7 Incremental Capacity Transfer Rights (ICTRs)

Will be determined at a later study phase

8 Schedule

It is anticipated that the time between receipt of executed Agreements and Commercial Operation may range from 12 to 18 months if no line work is required. If line work is required, construction time would generally be between 24 to 36 months after Agreement execution.

9 Interconnection Customer Requirements

It is understood that the Interconnection Customer is responsible for all costs associated with this interconnection. The costs above are reimbursable to AEP. The cost of the Interconnection Customer's generating plant and the costs for the line connecting the generating plant to the Desoto 345 kV station are not included in this report; these are assumed to be the Interconnection Customer's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for American Electric Power to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

In addition, if the Interconnection Customer considers use of the Option to Build, they should consult the guidance AEP has posted at:

 $\frac{https://www.aep.com/assets/docs/requiredpostings/TransmissionStudies/docs/2019/MerchantGenerationGuidelinesPJMoptiontoBuild.pdf$

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 AEP Requirements

The Interconnection Customer will be required to comply with all AEP Revenue Metering Requirements for Generation Interconnection Customers. The Revenue Metering Requirements may be found within the "Requirements for Connection of New Facilities or Changes to Existing Facilities Connected to the AEP Transmission System" document located at the following link:

http://www.pim.com/~/media/planning/plan-standards/private-aep/aep-interconnection-requirements.ashx

11 Network Impacts

The Queue Project AF1-298 was evaluated as a 200.0 MW (Capacity 84.0 MW) injection at the Desoto 345 kV station in the AEP area. Project AF1-298 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-298 was studied with a commercial probability of 0.53. Potential network impacts were as follows:

Summer Peak Load Flow

12 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

13 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

14 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FRO M BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Typ e	Rati ng MVA	PRE PROJEC T LOADI NG %	POST PROJEC T LOADI NG %	AC D C	MW IMPA CT
428092 25	2480 01	06DEAR B1	345. 0	OVE C	2480 13	06PIER CE	345. 0	OVE C	1	DEOK_P7-1_C5 4504MFTANNERS4512EBTA NNERS	tow er	972. 0	125.28	127.84	DC	24.76
440114 53	9455 80	AF1-223 TAP	138. 0	AEP	2433 19	05JAY	138. 0	AEP	1	AEP_P7-1_#11019	tow er	393. 0	117.87	119.65	DC	15.49
440114 54	9455 80	AF1-223 TAP	138. 0	AEP	2433 19	05JAY	138. 0	AEP	1	AEP_P7-1_#11087-C	tow er	393. 0	113.35	115.13	DC	15.51
440115 42	9460 30	AF1-268 TAP	138. 0	AEP	9455 80	AF1- 223 TAP	138. 0	AEP	1	AEP_P7-1_#11019	tow er	393. 0	101.65	103.42	DC	15.49

15 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
4361181 7	24321 8	05DESOT O	345. 0	AEP	94483 0	AF1-148 TAP	345. 0	AEP	2	AEP_P1- 2_#4817	operatio n	971.0	121.73	126.76	DC	48.81

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
4361184 3	24321 8	05DESOT O	345. 0	AEP	94537 0	AF1-202 TAP	345. 0	AEP	1	AEP_P1- 2_#8702 -C	operatio n	897.0	119.51	124.92	DC	48.47
4361189 7	24322 5	05KEYSTN	345. 0	AEP	24323 2	05SOREN S	345. 0	AEP	1	AEP_P1- 2_#8702 -C	operatio n	1301. 0	110.17	113.88	DC	48.22
4361189 8	24322 5	05KEYSTN	345. 0	AEP	24323 2	05SOREN S	345. 0	AEP	1	Base Case	operatio n	897.0	108.66	112.6	DC	35.3
4361169 4	94453 0	AF1-118 TAP	345. 0	AEP	24323 2	05SOREN S	345. 0	AEP	2	AEP_P1- 2_#4817	operatio n	971.0	152.53	157.55	DC	48.81
4361169 9	94453 0	AF1-118 TAP	345. 0	AEP	24323 2	05SOREN S	345. 0	AEP	2	Base Case	operatio n	971.0	108.02	111.73	DC	36.01
4361173 0	94454 0	AF1-119 TAP	345. 0	AEP	24322 5	05KEYST N	345. 0	AEP	1	AEP_P1- 2_#8702 -C	operatio n	897.0	138.23	143.63	DC	48.47
4361176 8	94483 0	AF1-148 TAP	345. 0	AEP	94453 0	AF1-118 TAP	345. 0	AEP	2	AEP_P1- 2_#4817	operatio n	971.0	130.85	135.88	DC	48.81
4361178 9	94537 0	AF1-202 TAP	345. 0	AEP	94454 0	AF1-119 TAP	345. 0	AEP	1	AEP_P1- 2_#8702 -C	operatio n	897.0	128.48	133.89	DC	48.47

16 System Reinforcements

ID	Index	Facility	Upgrade Description	Cost
42809225	1	06DEARB1 345.0 kV - 06PIERCE 345.0 kV Ckt 1	OVEC OVEC0001a (2): Perform a sag study. OVECs cost estimate for performing the sag study is \$125K. Project Type: FAC Cost: \$125,000 Time Estimate: 6-12 Months OVEC0001b (4): Replace 2 1600 A switches at Dearborn 345 kV Project Type: FAC Cost: \$1,500,000 Time Estimate: 12-18 months Months OVEC0001c (5): Replace 4 switches at Pierce 345kV Project Type: FAC Cost: \$6,000,000 Time Estimate: 12-18 months Months	\$7,625,000
44011453,44011454	2	AF1-223 TAP 138.0 kV - 05JAY 138.0 kV Ckt 1	AEP AEPI0019a (1012): Current AEP End Ratings are S/N:335MVA S/E: 392 MVA 1) Replace 2 risers(Sub cond 1590 AAC 61 Str) at Jay Station Project Type: FAC Cost: \$70,000 Time Estimate: 383.0 Months AEPI0019b (1013): Rebuild / reconductor 8.4 miles of ACSR ~ 556.5 ~ 26/7 ~ DOVE - Conductor section 1 Project Type: FAC Cost: \$18,800,000 Time Estimate: 409.0 Months AEPI0019c (1014): Rebuild / reconductor 0.05 miles of ACSR ~ 1781 ~ 84/19 ~ CHUKAR @ 284 F Conductor section 2 Project Type: FAC Cost: \$75,000 Time Estimate: 418.0 Months AEPI0019d (1015): Replace four Jay Sub cond 2000 AAC 91 Str. Project Type: FAC Cost: \$4,000,000 Time Estimate: 487.0 Months	\$22,945,000
44011542	3	AF1-268 TAP 138.0 kV - AF1-223 TAP 138.0 kV Ckt 1	AEP AEPI0019a (1012): Current AEP End Ratings are S/N:335MVA S/E: 392 MVA 1) Replace 2 risers(Sub cond 1590 AAC 61 Str) at Jay Station Project Type: FAC Cost: \$70,000 Time Estimate: 383.0 Months	\$70,000
			TOTAL COST	\$30,570,000

17 Flow Gate Details

The following indices contain additional information about each flowgate presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

17.1 Index 1

ID	FROM BUS#	FROM BUS	FRO M BUS AREA	TO BUS#	TO BUS	TO BUS ARE A	CK T ID	CONT NAME	Type	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
4280922 5	24800 1	06DEARB 1	OVEC	24801 3	06PIERC E	OVE C	1	DEOK_P7-1_C5 4504MFTANNERS4512EBTANNE RS	towe r	972.0	125.28	127.84	DC	24.76

Bus #	Bus	MW Impact		
243795	05HDWTR1G C	0.5638		
247264	05LAWG1A	6.9447		
247265	05LAWG1B	6.9447		
247266	05LAWG1S	11.0896		
247267	05LAWG2A	6.9447		
247268	05LAWG2B	6.9447		
247269	05LAWG2S	11.0896		
247543	V3-007 C	0.5638		
247929	S-071 E	7.3628		
247935	V3-007 E	27.0326		
247958	05WLD G2 E	14.0135		
247963	05HDWTR1G E	27.0326		
247968	Z2-115 E	0.0797		
250163	Y3-099 BAT	0.1991		
250167	Y3-100 BAT	0.1991		
251823	Z1-065 BAT	0.3770		
913222	Y1-054 E	-1.2692		
920501	AA2-148 C OP	3.5431		
920502	AA2-148 E OP	23.7114		
923881	AB2-028 C	2.9094		
923882	AB2-028 E	19.4706		
925243	AB2-178 BAT (Withdrawn : 12/10/2019)	1.9713		
926691	AC1-152	2.1908		
926851	AC1-172	2.1908		
926881	AC1-175 C	11.8074		
926882	AC1-175 E	19.2646		
926951	AC1-182	-1.0684		
932461	AC2-066 C	-1.4937		
932462	AC2-066 E	-2.4371		
932681	AC2-090 C	5.9037		
932682	AC2-090 E	9.6323		
932841	AC2-111 C O1	2.4266		
932842	AC2-111 E O1	3.9592		
933591	AC2-176 C O1	1.2906		
933592	AC2-176 E O1	8.6368		
933601	AC2-177 C O1	4.0394		
933602	AC2-177 E O1	27.0326		
934161	AD1-043 C O1	3.8136		
934162	AD1-043 E O1	6.2222		
934961	AD1-128 C	6.0990		
934962	AD1-128 E	9.9510		

Bus #	Bus	MW Impact		
936561	AD2-071 C	5.0680		
936562	AD2-071 E	2.4962		
936681	AD2-087 C O1 (Withdrawn : 12/09/2019)	2.7553		
936682	AD2-087 E O1 (Withdrawn : 12/09/2019)	12.9000		
939761	AE1-207 C	5.0346		
939762	AE1-207 E	6.9525		
939771	AE1-208 C	4.5170		
939772	AE1-208 E	6.1595		
939781	AE1-209 C O1	1.6097		
939782	AE1-209 E O1	10.7723		
939791	AE1-210 C O1	1.6097		
939792	AE1-210 E O1	10.7723		
939811	AE1-217 C O1	6.6709		
939812	AE1-217 E O1	9.2122		
940981	AE2-089 C O1	3.2713		
940982	AE2-089 E O1	2.1809		
940991	AE2-090 C	3.5926		
940992	AE2-090 E	2.3951		
941691	AE2-169	1.4364		
941701	AE2-170 O1	2.1194		
941711	AE2-171	1.3297		
941721	AE2-172	1.5883		
942071	AE2-219 C	1.7281		
942072	AE2-219 E	2.3864		
942081	AE2-220 C	8.1564		
942082	AE2-220 E	11.2636		
942221	AE2-234 C O1	1.5343		
942222	AE2-234 E O1	0.6939		
942791	AE2-297 C O1	13.9226		
942792	AE2-297 E O1	9.2818		
943772	AF1-045 BAT	3.3100		
944031	AF1-071 C	0.3215		
944032	AF1-071 E	0.5246		
944121	AF1-080	0.8537		
944531	AF1-118 C O1	10.0303		
944532	AF1-118 E O1	3.0251		
944541	AF1-119 C O1	15.6572		
944542	AF1-119 E O1	4.6768		
944831	AF1-148 C O1	3.6914		
944832	AF1-148 E O1	2.4609		
945371	AF1-202 C O1	3.5938		
945372	AF1-202 E O1	17.5462		
945561	AF1-221 C O1	18.3200		
945562	AF1-221 E O1	5.5066		
945581	AF1-221 L 01 AF1-223 C 01	3.6499		
945582	AF1-223 C O 1 AF1-223 E O 1	2.4332		
946031	AF1-223 E 01 AF1-268 C 01	5.9576		
946032	AF1-268 E O1	2.7175		
946341	AF1-298 C	10.4009		
946342	AF1-298 E	14.3631		
946491	AF1-313 C O1	2.5757		
946492	AF1-313 E O1	1.7171		

Bus #	Bus	MW Impact		
955491	J1031 C	1.4641		
955492	J1031 E	7.9214		
956561	J1152	12.1300		
LGEE	LGEE	0.9088		
WEC	WEC	1.1491		
CBM-W2	CBM-W2	25.0368		
NY	NY	0.4927		
CBM-W1	CBM-W1	36.6293		
TVA	TVA	1.8354		
O-066	O-066	6.0278		
CBM-S1	CBM-S1	11.6128		
G-007	G-007	0.9329		
MADISON	MADISON	20.2527		
MEC	MEC	5.2993		
CATAWBA	CATAWBA	0.0805		

17.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
44011453	945580	AF1-223	AEP	243319	05JAY	AEP	1	AEP_P7- 1 #11019	tower	393.0	117.87	119.65	DC	15.49

Bus #	Bus	MW Impact		
247935	V3-007 E	9.9966		
247963	05HDWTR1G E	9.9966		
923881	AB2-028 C	1.2778		
923882	AB2-028 E	8.5516		
926881	AC1-175 C	4.3663		
926882	AC1-175 E	7.1240		
927181	AC1-212 C	-0.1226		
927182	AC1-212 E	-1.1617		
927183	AC1-212 BAT	1.5110		
932681	AC2-090 C	2.1832		
932682	AC2-090 E	3.5620		
933591	AC2-176 C O1	-8.0478		
933592	AC2-176 E O1	-53.8587		
933601	AC2-177 C O1	1.4937		
933602	AC2-177 E O1	9.9966		
934961	AD1-128 C	3.3837		
934962	AD1-128 E	5.5209		
939761	AE1-207 C	3.0125		
939762	AE1-207 E	4.1601		
939771	AE1-208 C	2.4647		
939772	AE1-208 E	3.3609		
939781	AE1-209 C O1	0.8559		
939782	AE1-209 E O1	5.7282		
939791	AE1-210 C O1	0.8559		
939792	AE1-210 E O1	5.7282		
939811	AE1-217 C O1	4.6846		
939812	AE1-217 E O1	6.4691		
941691	AE2-169	0.7838		
941701	AE2-170 O1	1.5144		
941721	AE2-172	0.9504		
942081	AE2-220 C	3.0162		
942082	AE2-220 E	4.1652		
944531	AF1-118 C O1	9.3798		
944532	AF1-118 E O1	2.8289		
944541	AF1-119 C O1	5.3726		
944542	AF1-119 E O1	1.6048		
944831	AF1-148 C O1	3.3278		
944832	AF1-148 E O1	2.2185		
945371	AF1-202 C O1	1.1863		
945372	AF1-202 E O1	5.7919		
945581	AF1-223 C O1	39.3426		
945582	AF1-223 E O1	26.2284		

Bus #	Bus	MW Impact		
946031	AF1-268 C O1	12.9111		
946032	AF1-268 E O1	5.8893		
946341	AF1-298 C	2.9312		
946342	AF1-298 E	4.0479		
946491	AF1-313 C O1	0.9235		
946492	AF1-313 E O1	0.6156		
LGEE	LGEE	0.6498		
CPLE	CPLE	0.1349		
WEC	WEC	0.0117		
CBM-W2	CBM-W2	6.4128		
NY	NY	0.0553		
TVA	TVA	0.7966		
O-066	O-066	0.6115		
CBM-S2	CBM-S2	1.5490		
CBM-S1	CBM-S1	5.7510		
G-007	G-007	0.0936		
MEC	MEC	0.4751		

17.3 Index 3

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
44011542	946030	AF1-268	AEP	945580	AF1- 223 TAP	AEP	1	AEP_P7- 1 #11019	tower	393.0	101.65	103.42	DC	15.49

Bus #	Bus	MW Impact		
247935	V3-007 E	9.9966		
247963	05HDWTR1G E	9.9966		
923881	AB2-028 C	1.2778		
923882	AB2-028 E	8.5516		
926881	AC1-175 C	4.3663		
926882	AC1-175 E	7.1240		
927181	AC1-212 C	-0.1226		
927182	AC1-212 E	-1.1617		
927183	AC1-212 BAT	1.5110		
932681	AC2-090 C	2.1832		
932682	AC2-090 E	3.5620		
933591	AC2-176 C O1	-8.0478		
933592	AC2-176 E O1	-53.8587		
933601	AC2-177 C O1	1.4937		
933602	AC2-177 E O1	9.9966		
934961	AD1-128 C	3.3837		
934962	AD1-128 E	5.5209		
939761	AE1-207 C	3.0125		
939762	AE1-207 E	4.1601		
939771	AE1-208 C	2.4647		
939772	AE1-208 E	3.3609		
939781	AE1-209 C O1	0.8559		
939782	AE1-209 E O1	5.7282		
939791	AE1-210 C O1	0.8559		
939792	AE1-210 E O1	5.7282		
939811	AE1-217 C O1	4.6846		
939812	AE1-217 E O1	6.4691		
941691	AE2-169	0.7838		
941701	AE2-170 O1	1.5144		
941721	AE2-172	0.9504		
942081	AE2-220 C	3.0162		
942082	AE2-220 E	4.1652		
944531	AF1-118 C O1	9.3798		
944532	AF1-118 E O1	2.8289		
944541	AF1-119 C O1	5.3726		
944542	AF1-119 E O1	1.6048		
944831	AF1-148 C O1	3.3278		
944832	AF1-148 E O1	2.2185		
945371	AF1-202 C O1	1.1863		
945372	AF1-202 E O1	5.7919		
946031	AF1-268 C O1	12.9111		
946032	AF1-268 E O1	5.8893		

Bus #	Bus	MW Impact		
946341	AF1-298 C	2.9312		
946342	AF1-298 E	4.0479		
946491	AF1-313 C O1	0.9235		
946492	AF1-313 E O1	0.6156		
LGEE	LGEE	0.6498		
CPLE	CPLE	0.1349		
WEC	WEC	0.0117		
CBM-W2	CBM-W2	6.4128		
NY	NY	0.0553		
TVA	TVA	0.7966		
O-066	O-066	0.6115		
CBM-S2	CBM-S2	1.5490		
CBM-S1	CBM-S1	5.7510		
G-007	G-007	0.0936		
MEC	MEC	0.4751		

Affected Systems

18 Affected Systems

18.1 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

18.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

18.3 TVA

TVA Impacts to be determined during later study phases (as applicable).

18.4 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

18.5 NYISO

NYISO Impacts to be determined during later study phases (as applicable).

19 Contingency Descriptions

Contingency Name	Contingency Definition
AEP_P1-2_#4817	CONTINGENCY 'AEP_P1-2_#4817' OPEN BRANCH FROM BUS 243225 TO BUS 243232 CKT 1 / 243225 05KEYSTN 345 243232 05SORENS 345 1 END
AEP_P1-2_#8702-C	CONTINGENCY 'AEP_P1-2_#8702-C' OPEN BRANCH FROM BUS 944530 TO BUS 243232 CKT 2 / 944530 AF1-118 TAP 345 243232 05SORENS 345 2 END
AEP_P7-1_#11087-C	CONTINGENCY 'AEP_P7-1_#11087-C' OPEN BRANCH FROM BUS 944540 TO BUS 243225 CKT 1
Base Case	
AEP_P7-1_#11019	CONTINGENCY 'AEP_P7-1_#11019' OPEN BRANCH FROM BUS 944530 TO BUS 243232 CKT 2
DEOK_P7-1_C5 4504MFTANNERS4512EBTANNERS	CONTINGENCY 'DEOK_P7-1_C5 4504MFTANNERS4512EBTANNERS' OPEN BRANCH FROM BUS 243233 TO BUS 249567 CKT 1 / 243233 05TANNER 345 249567 08M.FORT 345 1 OPEN BRANCH FROM BUS 243233 TO BUS 249565 CKT 1 / 243233 05TANNER 345 249565 08EBEND

Short Circuit

20 Short Circuit

The following Breakers are overduty:

None