

# Generation Interconnection Feasibility Study Report for

Queue Project AG1-327
WEST WAYNESBORO-EAST WAYNESBORO 138 KV
23.7 MW Capacity / 35 MW Energy

# **Table of Contents**

| 1  | Intr | roduction                                                       | 4   |
|----|------|-----------------------------------------------------------------|-----|
| 2  | Pre  | face                                                            | 4   |
| 3  | Gen  | neral                                                           | 5   |
| 4  | Poi  | nt of Interconnection                                           | 6   |
| 5  | Cos  | t Summary                                                       | 6   |
| 6  | Tra  | nsmission Owner Scope of Work                                   | 7   |
| 7  | Sch  | edule                                                           | 8   |
| 8  | Tra  | nsmission Owner Analysis                                        | 8   |
| 9  | Inte | erconnection Customer Requirements                              | 8   |
| 10 | Rev  | venue Metering and SCADA Requirements                           | 8   |
| 1  | 0.1  | PJM Requirements                                                | 9   |
| 1  | 0.2  | Meteorological Data Reporting Requirements                      | 10  |
| 1  | 0.3  | Interconnected Transmission Owner Requirements                  | 10  |
| 11 | Sun  | nmer Peak - Load Flow Analysis - Primary POI                    | 11  |
| 1  | 1.1  | Generation Deliverability                                       | 12  |
| 1  | 1.2  | Multiple Facility Contingency                                   | 12  |
| 1  | 1.3  | Contribution to Previously Identified Overloads                 | 12  |
| 1  | 1.4  | Potential Congestion due to Local Energy Deliverability         | 12  |
| 1  | 1.5  | System Reinforcements - Summer Peak Load Flow - Primary POI     | 14  |
| 1  | 1.6  | Flow Gate Details - Primary POI                                 | 15  |
|    | 11.6 | 6.1 Index 1                                                     | 16  |
|    | 11.6 | 6.2 Index 2                                                     | 18  |
|    | 11.6 | 6.3 Index 3                                                     | 20  |
| 1  | 1.7  | Queue Dependencies                                              | 22  |
| 1  | 1.8  | Contingency Descriptions - Primary POI                          | 23  |
| 12 | Sho  | ort Circuit Analysis - Primary POI                              | 25  |
| 1  | 2.1  | System Reinforcements - Short Circuit Error! Bookmark not defin | ed. |
| 13 | Sun  | nmer Peak - Load Flow Analysis - Secondary POI                  | 26  |
| 13 | 3.1  | Generation Deliverability                                       | 27  |
| 13 | 3.2  | Multiple Facility Contingency                                   | 27  |
| 1: | 3.3  | Contribution to Previously Identified Overloads                 | 27  |

| 13.4  | Potential Congestion due to Local Energy Deliverability | 27 |
|-------|---------------------------------------------------------|----|
| 13.5  | Flow Gate Details - Secondary POI                       | 28 |
| 13.6  | Contingency Descriptions - Secondary POI                | 29 |
| 14 Af | fected Systems                                          | 30 |
| 14.1  | NYISO                                                   | 30 |
| 15 At | tachment 1: One Line Diagram                            | 31 |

#### 1 Introduction

This Feasibility Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 36.2, as well as the Feasibility Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is APS.

#### 2 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

#### 3 General

The Interconnection Customer (IC), has proposed a Solar generating facility located in Franklin County, Pennsylvania. The installed facilities will have a total capability of 35 MW with 23.7 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this project is December 31, 2023. This study does not imply a TO commitment to this in-service date.

| Queue Number        | AG1-327                                |
|---------------------|----------------------------------------|
| Project Name        | WEST WAYNESBORO-EAST WAYNESBORO 138 KV |
| State               | Pennsylvania                           |
| County              | Franklin                               |
| Transmission Owner  | APS                                    |
| MFO                 | 35                                     |
| MWE                 | 35                                     |
| MWC                 | 23.7                                   |
| Fuel                | Solar                                  |
| Basecase Study Year | 2024                                   |

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

#### 4 Point of Interconnection

AG1-327 will interconnect with the FirstEnergy, West Penn Power system. The interconnection of the project will be accomplished by constructing a new 138 kV three (3) breaker ring bus substation and looping the West Waynesboro – East Waynesboro 138 kV line into the new station. The new substation will be located approximately 2.4 miles from West Waynesboro Substation and 2.8 miles from East Waynesboro substation. The IC will be responsible for acquiring all easements, properties, and permits that may be required to construct both the new interconnection switching station and the associated facilities. The IC will also be responsible for the rough grade of the property and an access road to the proposed three-breaker ring bus site. The project will also require Non-Direct Connection upgrades at West Waynesboro Substation and Ringgold Substation.

Attachment 1 shows a one-line diagram of the proposed Direct Connection facilities for the AG1-327 generation project to connect to the FirstEnergy ("FE") Transmission System.

# **5** Cost Summary

The AG1-327 project will be responsible for the following costs:

| Description                                 | Total Cost                |
|---------------------------------------------|---------------------------|
| <b>Total Physical Interconnection Costs</b> | \$13,692,000              |
| Total System Network Upgrade Costs          | \$74,238,680 <sup>1</sup> |
| Total Costs                                 | \$87,930,680              |

The costs provided above exclude the Contribution in Aid of Construction ("CIAC") Federal Income Tax Gross Up charge. If, at a future date, it is determined that the CIAC Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Cost allocations for any System Upgrades will be provided in the System Impact Study Report.

<sup>&</sup>lt;sup>1</sup> This project currently causes and/or contributes to overloads of the Transmission System (see Summer Peak Load Flow Analysis section below) and therefore has potential to have cost allocation for the system reinforcements listed in the report. This will be re-evaluated in the System Impact phase. The results may vary with queue customers withdrawing from the queue and other generators deactivating over time. If a customer is the first to cause the need for a project (causes loading to exceed 100% of rating), then the customer is responsible. If a customer contributes to a facility that is already overloaded by a prior queue, then they may receive cost allocation.

# 6 Transmission Owner Scope of Work

The interconnection of the project will be accomplished by constructing a new 138 kV three (3) breaker ring bus substation and looping the West Waynesboro – East Waynesboro 138 kV line into the new station. The new substation will be located approximately 2.4 miles from West Waynesboro Substation and 2.8 miles from East Waynesboro substation. The IC will be responsible for acquiring all easements, properties, and permits that may be required to construct both the new interconnection switching station and the associated facilities. The IC will also be responsible for the rough grade of the property and an access road to the proposed three-breaker ring bus site. The project will also require Non-Direct Connection upgrades at West Waynesboro Substation and Ringgold Substation.

The total physical interconnection costs is given in the table below:

| Description                                              | Total Cost   |
|----------------------------------------------------------|--------------|
| Install disconnect switch, dead-end structure, and       | \$330,000    |
| associated facilities for generator lead line exit at    |              |
| interconnection substation.                              |              |
| Construct 138 kV three breaker ring bus interconnection  | \$6,190,000  |
| substation with SCADA control.                           |              |
| Loop the Ringgold - West Waynesboro 138 kV line          | \$850,000    |
| between West Waynesboro and East Waynesboro into         |              |
| the new substation.                                      |              |
| Install 2.4 miles of OPGW to West Waynesboro             | \$2,189,000  |
| substation.                                              |              |
| Install 2.8 miles of OPGW to East Waynesboro substation. | \$2,553,000  |
| Upgrade relaying at West Waynesboro Substation.          | \$790,000    |
| Upgrade relaying at Ringgold Substation.                 | \$790,000    |
| Total Physical Interconnection Costs                     | \$13,692,000 |

#### 7 Schedule

Based on the scope of work for the interconnection facilities, it is expected to take a minimum of **24 months** after the signing of an Interconnection Construction Service Agreement and construction kickoff call to complete the installation. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the defined work and that all system outages will be allowed when requested.

The schedule for the required Network Impact Reinforcements will be more clearly identified in future study phases. The estimated time to complete each of the required reinforcements is identified in the "System Reinforcements" section of the report.

If the customer is ultimately responsible for network upgrades, then the schedule for those upgrades will be refined in future study phases. The customer would need to wait for those upgrades to be completed prior to commercial operation unless determined deliverable by an interim deliverability study. The elapsed time to complete any network upgrades is provided in the System Reinforcements table of this report<sup>1</sup>.

# 8 Transmission Owner Analysis

FE performed an analysis of its underlying transmission <100 kV system. The AG1-327 project did not contribute to any overloads on the FE Transmission <100 kV System.

# 9 Interconnection Customer Requirements

#### 9.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in FE's "Requirements for Transmission Connected Facilities" document located at: <a href="http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx">http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</a>.

Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

#### 9.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with FE's "Requirements for Transmission Connected Facilities" document located at: <a href="http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx">http://www.pjm.com/planning/design-engineering/to-tech-standards/private-firstenergy.aspx</a>. In particular, the IC is responsible for the following:

- 1. The purchase and installation of a fully rated 138 kV circuit breaker to protect the AG1-327 generator lead line. A single circuit breaker must be used to protect this line; if the project has several GSU transformers, the individual GSU transformer breakers cannot be used to protect this line.
- 2. The purchase and installation of the minimum required FE generation interconnection relaying and control facilities. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the FE Transmission System Control Center.
- 4. Compliance with the FE and PJM generator power factor and voltage control requirements.
- 5. The execution of a back-up service agreement to serve the customer load supplied from the AG1-327 generation project metering point when the units are out-of-service. This assumes the intent of the IC is to net the generation with the load.

The IC will also be required to meet all PJM, ReliabilityFirst, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and ReliabilityFirst audits. Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the FE Transmission System.

#### 9.3 Power Factor Requirements

The IC shall design its non-synchronous Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the FE Transmission System.

#### 10 Revenue Metering and SCADA Requirements

#### **10.1 PJM Requirements**

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

# **10.2** Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back Panel temperature (Fahrenheit) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Irradiance (Watts/meter<sup>2</sup>) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Ambient air temperature (Fahrenheit) (Accepted, not required)
- Wind speed (meters/second) (Accepted, not required)
- Wind direction (decimal degrees from true north) (Accepted, not required)

#### **10.3 Interconnected Transmission Owner Requirements**

The IC will be required to comply with all Interconnected Transmission Owner's revenue metering requirements for generation interconnection customers located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/

# 11 Summer Peak - Load Flow Analysis - Primary POI

The Queue Project AG1-327 was evaluated as a 35.0 MW (Capacity 23.1 MW) injection tapping the West Waynesboro to East Waynesboro 138 kV line in the APS area. Project AG1-327 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-327 was studied with a commercial probability of 53.0 %. Potential network impacts were as follows:

#### 11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

#### 11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

#### 11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

| ID            | FRO<br>M<br>BUS# | FROM<br>BUS    | kV        | FROM<br>BUS<br>AREA | TO<br>BUS# | TO BUS         | kV        | TO<br>BUS<br>AREA | CK<br>T<br>ID | CONT NAME               | Туре        | Ratin<br>g<br>MVA | PRE<br>PROJEC<br>T<br>LOADI<br>NG % | POST<br>PROJEC<br>T<br>LOADI<br>NG % | AC D<br>C | MW<br>IMPA<br>CT |
|---------------|------------------|----------------|-----------|---------------------|------------|----------------|-----------|-------------------|---------------|-------------------------|-------------|-------------------|-------------------------------------|--------------------------------------|-----------|------------------|
| 1650279<br>86 | 2005<br>04       | 26CARLIS<br>LE | 115.<br>0 | PENEL<br>EC         | 2045<br>28 | 27GARDNE<br>RS | 115.<br>0 | METED             | 1             | PL:10:P24:100<br>548    | bus         | 160.<br>0         | 100.56                              | 101.16                               | DC        | 2.12             |
| 1657844<br>55 | 2005<br>20       | 26ROXBU<br>RY  | 115.<br>0 | PENEL<br>EC         | 9614<br>80 | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC       | 1             | PL:10:P24:100<br>548    | bus         | 159.<br>0         | 109.94                              | 110.53                               | DC        | 2.07             |
| 1659887<br>06 | 2005<br>20       | 26ROXBU<br>RY  | 115.<br>0 | PENEL<br>EC         | 9614<br>80 | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC       | 1             | ME-P2-3-ME-<br>230-005A | break<br>er | 159.<br>0         | 111.67                              | 112.22                               | DC        | 1.93             |
| 1659887<br>07 | 2005<br>20       | 26ROXBU<br>RY  | 115.<br>0 | PENEL<br>EC         | 9614<br>80 | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC       | 1             | PL:10:P45:102<br>437    | break<br>er | 159.<br>0         | 109.94                              | 110.53                               | DC        | 2.07             |
| 1659887<br>08 | 2005<br>20       | 26ROXBU<br>RY  | 115.<br>0 | PENEL<br>EC         | 9614<br>80 | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC       | 1             | ME-P2-3-ME-<br>230-005C | break<br>er | 159.<br>0         | 108.88                              | 109.44                               | DC        | 1.99             |
| 1657844<br>39 | 9614<br>80       | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC         | 2005<br>04 | 26CARLISL<br>E | 115.<br>0 | PENEL<br>EC       | 1             | PL:10:P24:100<br>548    | bus         | 159.<br>0         | 119.33                              | 119.92                               | DC        | 2.07             |
| 1659886<br>80 | 9614<br>80       | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC         | 2005<br>04 | 26CARLISL<br>E | 115.<br>0 | PENEL<br>EC       | 1             | ME-P2-3-ME-<br>230-005A | break<br>er | 159.<br>0         | 120.44                              | 120.98                               | DC        | 1.93             |
| 1659886<br>81 | 9614<br>80       | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC         | 2005<br>04 | 26CARLISL<br>E | 115.<br>0 | PENEL<br>EC       | 1             | PL:10:P45:102<br>437    | break<br>er | 159.<br>0         | 119.33                              | 119.92                               | DC        | 2.07             |
| 1659886<br>82 | 9614<br>80       | AF2-439<br>TAP | 115.<br>0 | PENEL<br>EC         | 2005<br>04 | 26CARLISL<br>E | 115.<br>0 | PENEL<br>EC       | 1             | ME-P2-3-ME-<br>230-005C | break<br>er | 159.<br>0         | 117.83                              | 118.39                               | DC        | 1.99             |

#### 11.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

| ID            | FROM<br>BUS# | FROM<br>BUS    | kV        | FROM<br>BUS<br>AREA | TO<br>BUS# | TO BUS         | kV        | TO BUS<br>AREA | CK<br>T<br>ID | CON<br>T<br>NAM<br>E                     | Туре          | Ratin<br>g<br>MVA | PRE<br>PROJEC<br>T<br>LOADIN<br>G % | POST<br>PROJEC<br>T<br>LOADIN<br>G % | AC D<br>C | MW<br>IMPAC<br>T |
|---------------|--------------|----------------|-----------|---------------------|------------|----------------|-----------|----------------|---------------|------------------------------------------|---------------|-------------------|-------------------------------------|--------------------------------------|-----------|------------------|
| 1676776<br>91 | 20050<br>4   | 26CARLISL<br>E | 115.<br>0 | PENELE<br>C         | 20452<br>8 | 27GARDNE<br>RS | 115.<br>0 | METED          | 1             | Base<br>Case                             | operatio<br>n | 133.0             | 99.94                               | 100.64                               | DC        | 2.05             |
| 1662234<br>43 | 20052<br>0   | 26ROXBU<br>RY  | 115.<br>0 | PENELE<br>C         | 96148<br>0 | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C    | 1             | Base<br>Case                             | operatio<br>n | 133.0             | 110.97                              | 111.65                               | DC        | 2.0              |
| 1662234<br>44 | 20052<br>0   | 26ROXBU<br>RY  | 115.<br>0 | PENELE<br>C         | 96148<br>0 | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C    | 1             | ME-<br>P1-3-<br>ME-<br>500-<br>003T      | operatio<br>n | 159.0             | 108.29                              | 108.86                               | DC        | 2.0              |
| 1662234<br>45 | 20052<br>0   | 26ROXBU<br>RY  | 115.<br>0 | PENELE<br>C         | 96148<br>0 | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C    | 1             | ME-<br>P1-2-<br>ME-<br>230-<br>019       | operatio<br>n | 159.0             | 108.29                              | 108.86                               | DC        | 2.0              |
| 1679381<br>04 | 23518<br>9   | 01GUILFD       | 138.<br>0 | АР                  | 23513<br>6 | 01ANTRIM       | 138.<br>0 | АР             | 1             | AP-<br>P1-2-<br>WP-<br>138-<br>112-<br>B | operatio<br>n | 306.0             | 105.54                              | 107.22                               | DC        | 5.15             |
| 1662233<br>84 | 96148<br>0   | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C         | 20050<br>4 | 26CARLISLE     | 115.<br>0 | PENELE<br>C    | 1             | Base<br>Case                             | operatio<br>n | 133.0             | 121.87                              | 122.55                               | DC        | 2.0              |
| 1662233<br>85 | 96148<br>0   | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C         | 20050<br>4 | 26CARLISLE     | 115.<br>0 | PENELE<br>C    | 1             | ME-<br>P1-2-<br>ME-<br>230-<br>019       | operatio<br>n | 159.0             | 117.28                              | 117.84                               | DC        | 2.0              |
| 1662233<br>86 | 96148<br>0   | AF2-439<br>TAP | 115.<br>0 | PENELE<br>C         | 20050<br>4 | 26CARLISLE     | 115.<br>0 | PENELE<br>C    | 1             | ME-<br>P1-3-<br>ME-<br>500-<br>003T      | operatio<br>n | 159.0             | 117.28                              | 117.84                               | DC        | 2.0              |

# 11.5 System Reinforcements - Summer Peak Load Flow - Primary POI

| 27GARDNERS   115.0 kV Ckt 1   PENELEC   PN-AG1-F-0035C (2301) : Reconductor 7.54 miles of line.   Project Type : FAC   Cost : \$18,480,000   Time Estimate : 44.0 Months                                                                                                 | ID            | ldx | Facility                         | Upgrade Description                                                                                                                                                                                                                                               | Cost         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 165784455,165 988708,165988 707,165988706  2                                                                                                                                                                                                                             | 165027986     | 1   | 115.0 kV -<br>27GARDNERS         | ME-AG1-F-0005A (2155): Reconductor line with larger conductor (13.1 miles). Project Type: FAC Cost: \$31,738,680 Time Estimate: 50.0 Months  PENELEC PN-AG1-F-0035C (2301): Reconductor 7.54 miles of line. Project Type: FAC Cost: \$18,480,000                  | \$50,218,680 |
| PN-AG1-F-0020A (2246) : Upgrade relaying at Carlisle Pike Project Type : FAC Cost : \$800,000 Time Estimate : 12.0 Months  PN-AG1-F-0020B (2247) : Reconductor 6.82 miles of line. Please line drops at Carlisle Pike substation. Project Type : FAC Cost : \$16,840,000 | 988708,165988 | 2   | 115.0 kV - AF2-<br>439 TAP 115.0 | PN-AG1-F-0026A (2261): Reconductor 2.59 miles of line. Project Type: FAC Cost: \$6,380,000                                                                                                                                                                        | \$6,380,000  |
|                                                                                                                                                                                                                                                                          | 988680,165988 | 3   | 115.0 kV -<br>26CARLISLE         | PN-AG1-F-0020A (2246): Upgrade relaying at Carlisle Pike Project Type: FAC Cost: \$800,000 Time Estimate: 12.0 Months  PN-AG1-F-0020B (2247): Reconductor 6.82 miles of line. Please line drops at Carlisle Pike substation. Project Type: FAC Cost: \$16,840,000 | \$17,640,000 |

#### 11.6 Flow Gate Details - Primary POI

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

# 11.6.1 Index 1

|    | ID          | FROM<br>BUS# | FROM BUS       | FROM<br>BUS<br>AREA | TO<br>BUS# | TO BUS         | TO<br>BUS<br>AREA | CK<br>T<br>ID | CONT NAME            | Typ<br>e | Ratin<br>g<br>MVA | PRE<br>PROJECT<br>LOADIN<br>G % | POST<br>PROJECT<br>LOADIN<br>G % | AC D<br>C | MW<br>IMPAC<br>T |
|----|-------------|--------------|----------------|---------------------|------------|----------------|-------------------|---------------|----------------------|----------|-------------------|---------------------------------|----------------------------------|-----------|------------------|
| 16 | 502798<br>6 | 20050<br>4   | 26CARLISL<br>E | PENELE<br>C         | 20452<br>8 | 27GARDNER<br>S | METE<br>D         | 1             | PL:10:P24:10054<br>8 | bus      | 160.0             | 100.56                          | 101.16                           | DC        | 2.12             |

| Bus #  | Bus                         | Gendeliv MW Impact | Туре                  | Full MW Impact |
|--------|-----------------------------|--------------------|-----------------------|----------------|
| 200870 | 26C_T85_W218                | 0.3757             | 50/50                 | 0.3757         |
| 203905 | 26W1-045 C                  | 0.2399             | 50/50                 | 0.2399         |
| 237329 | 01CHBRG_I12                 | 0.5202             | 50/50                 | 0.5202         |
| 901242 | W1-045 E OP1                | 1.3251             | 50/50                 | 1.3251         |
| 930822 | AB1-127 E                   | 0.3881             | Adder                 | 0.46           |
| 930832 | AB1-128 E                   | 0.3881             | Adder                 | 0.46           |
| 933977 | AD1-020 EBAT<br>(Suspended) | 1.3794             | Merchant Transmission | 1.3794         |
| 934371 | AD1-061 C                   | 0.3669             | Adder                 | 0.43           |
| 934372 | AD1-061 E                   | 0.3186             | Adder                 | 0.37           |
| 936061 | AD2-009 C                   | 2.4854             | Adder                 | 2.92           |
| 936062 | AD2-009 E                   | 1.1316             | Adder                 | 1.33           |
| 936471 | AD2-062 C O1                | 10.9654            | 50/50                 | 10.9654        |
| 936472 | AD2-062 E O1                | 5.4929             | 50/50                 | 5.4929         |
| 938384 | AE1-071-C                   | 14.1867            | 50/50                 | 14.1867        |
| 938385 | AE1-071-E                   | 8.6811             | 50/50                 | 8.6811         |
| 938753 | AE1-101 C1                  | 1.9142             | Adder                 | 2.25           |
| 938754 | AE1-101 C2                  | 0.9571             | Adder                 | 1.13           |
| 938756 | AE1-101 E1                  | 3.9517             | Adder                 | 4.65           |
| 938757 | AE1-101 E2                  | 1.9729             | Adder                 | 2.32           |
| 939033 | AE1-132 C                   | 2.6352             | Adder                 | 3.1            |
| 939034 | AE1-132 E                   | 1.7568             | Adder                 | 2.07           |
| 939591 | AE1-188 C                   | 0.6808             | Adder                 | 0.8            |
| 939592 | AE1-188 E                   | 0.3999             | Adder                 | 0.47           |
| 940671 | AE2-054 C (Suspended)       | 0.5756             | Adder                 | 0.68           |
| 940672 | AE2-054 E (Suspended)       | 0.3837             | Adder                 | 0.45           |
| 945011 | AF1-166 C                   | 0.5644             | Adder                 | 0.66           |
| 945012 | AF1-166 E                   | 0.3763             | Adder                 | 0.44           |
| 945441 | AF1-209 C O1                | 0.5609             | Adder                 | 0.66           |
| 945442 | AF1-209 E O1                | 0.3739             | Adder                 | 0.44           |
| 945591 | AF1-224 C                   | 0.4269             | Adder                 | 0.5            |
| 945592 | AF1-224 E                   | 0.2161             | Adder                 | 0.25           |
| 958071 | AF2-101 C                   | -0.2674            | Adder                 | -0.31          |
| 958221 | AF2-116 C                   | 0.6872             | Adder                 | 0.81           |
| 958222 | AF2-116 E                   | 0.3462             | Adder                 | 0.41           |
| 958231 | AF2-117 C                   | 2.1961             | Adder                 | 2.58           |
| 958232 | AF2-117 E                   | 1.0978             | Adder                 | 1.29           |
| 958551 | AF2-146 C                   | 1.8602             | 50/50                 | 1.8602         |
| 958552 | AF2-146 E                   | 1.2402             | 50/50                 | 1.2402         |
| 958571 | AF2-148 C                   | 1.5119             | 50/50                 | 1.5119         |
| 958572 | AF2-148 E                   | 1.0080             | 50/50                 | 1.0080         |
| 958601 | AF2-151 C                   | -0.2638            | Adder                 | -0.31          |

| Bus #  | Bus          | Gendeliv MW Impact | Туре                  | Full MW Impact |
|--------|--------------|--------------------|-----------------------|----------------|
| 958871 | AF2-178      | 1.1561             | 50/50                 | 1.1561         |
| 958881 | AF2-179      | 0.3411             | Adder                 | 0.4            |
| 958891 | AF2-180      | 0.3411             | Adder                 | 0.4            |
| 958931 | AF2-184      | 0.2800             | Adder                 | 0.33           |
| 959223 | AF2-213 BAT  | 4.6893             | Merchant Transmission | 4.6893         |
| 959241 | AF2-215 C    | 0.1578             | Adder                 | 0.19           |
| 959242 | AF2-215 E    | 0.1052             | Adder                 | 0.12           |
| 959381 | AF2-229 C    | 3.2312             | 50/50                 | 3.2312         |
| 959382 | AF2-229 E    | 2.6976             | 50/50                 | 2.6976         |
| 959773 | AF2-268 BAT  | 0.1026             | Merchant Transmission | 0.1026         |
| 959842 | AF2-275 E    | 0.1764             | Adder                 | 0.21           |
| 959852 | AF2-276 E    | 0.1764             | Adder                 | 0.21           |
| 961481 | AF2-439 C    | 8.0462             | 50/50                 | 8.0462         |
| 961482 | AF2-439 E    | 7.4273             | 50/50                 | 7.4273         |
| 962082 | AG1-052 BAT  | 0.6306             | Merchant Transmission | 0.6306         |
| 963901 | AG1-243 C    | 0.2010             | Adder                 | 0.45           |
| 963902 | AG1-243 E    | 0.1082             | Adder                 | 0.24           |
| 964641 | AG1-327 C O1 | 0.6309             | Adder                 | 1.4            |
| 964642 | AG1-327 E O1 | 0.3250             | Adder                 | 0.72           |
| 964693 | AG1-332 BAT  | 0.1049             | Merchant Transmission | 0.1049         |
| 965963 | AG1-465 BAT  | 2.9426             | Merchant Transmission | 2.9426         |
| 966041 | AG1-473 C    | 0.7851             | Adder                 | 1.74           |
| 966042 | AG1-473 E    | 0.5234             | Adder                 | 1.16           |
| 966152 | AG1-484 BAT  | 3.8508             | 50/50                 | 3.8508         |
| 966172 | AG1-486 BAT  | 0.5437             | Merchant Transmission | 0.5437         |
| 966461 | AG1-515 C    | 0.1450             | Adder                 | 0.32           |
| 966462 | AG1-515 E    | 0.2176             | Adder                 | 0.48           |
| WEC    | WEC          | 0.1304             | Confirmed LTF         | 0.1304         |
| LGEE   | LGEE         | 0.2576             | Confirmed LTF         | 0.2576         |
| CPLE   | CPLE         | 0.2355             | Confirmed LTF         | 0.2355         |
| CBM-W2 | CBM-W2       | 3.5930             | Confirmed LTF         | 3.5930         |
| NY     | NY           | 0.2030             | Confirmed LTF         | 0.2030         |
| TVA    | TVA          | 0.5502             | Confirmed LTF         | 0.5502         |
| O-066  | O-066        | 6.4608             | Confirmed LTF         | 6.4608         |
| SIGE   | SIGE         | 0.1437             | Confirmed LTF         | 0.1437         |
| CBM-S2 | CBM-S2       | 3.7584             | Confirmed LTF         | 3.7584         |
| CBM-S1 | CBM-S1       | 0.1505             | Confirmed LTF         | 0.1505         |
| G-007  | G-007        | 1.0133             | Confirmed LTF         | 1.0133         |
| MEC    | MEC          | 0.6499             | Confirmed LTF         | 0.6499         |
| LAGN   | LAGN         | 0.6895             | Confirmed LTF         | 0.6895         |
| CBM-W1 | CBM-W1       | 5.8744             | Confirmed LTF         | 5.8744         |

# 11.6.2 Index 2

| ID        | FROM<br>BUS# | FROM BUS  | FROM<br>BUS<br>AREA | TO<br>BUS# | TO<br>BUS          | TO BUS<br>AREA | CKT ID | CONT<br>NAME                    | Туре    | Rating<br>MVA | PRE<br>PROJECT<br>LOADING<br>% | POST<br>PROJECT<br>LOADING<br>% | AC DC | MW<br>IMPACT |
|-----------|--------------|-----------|---------------------|------------|--------------------|----------------|--------|---------------------------------|---------|---------------|--------------------------------|---------------------------------|-------|--------------|
| 165988706 | 200520       | 26ROXBURY | PENELEC             | 961480     | AF2-<br>439<br>TAP | PENELEC        | 1      | ME-P2-<br>3-ME-<br>230-<br>005A | breaker | 159.0         | 111.67                         | 112.22                          | DC    | 1.93         |

| Bus #  | Bus                   | Gendeliv MW Impact | Туре  | Full MW Impact |
|--------|-----------------------|--------------------|-------|----------------|
| 237329 | 01CHBRG_I12           | 0.4706             | 50/50 | 0.4706         |
| 901242 | W1-045 E OP1          | 0.3063             | Adder | 0.36           |
| 930822 | AB1-127 E             | 0.3508             | Adder | 0.41           |
| 930832 | AB1-128 E             | 0.3508             | Adder | 0.41           |
| 933977 | AD1-020 EBAT          | 2.1736             | 50/50 | 2.1736         |
|        | (Suspended)           |                    |       |                |
| 934371 | AD1-061 C             | 0.3320             | Adder | 0.39           |
| 934372 | AD1-061 E             | 0.2883             | Adder | 0.34           |
| 936061 | AD2-009 C             | 2.2487             | Adder | 2.65           |
| 936062 | AD2-009 E             | 1.0238             | Adder | 1.2            |
| 936471 | AD2-062 C O1          | 9.9066             | 50/50 | 9.9066         |
| 936472 | AD2-062 E O1          | 4.9626             | 50/50 | 4.9626         |
| 938384 | AE1-071-C             | 12.4256            | 50/50 | 12.4256        |
| 938385 | AE1-071-E             | 7.6034             | 50/50 | 7.6034         |
| 938753 | AE1-101 C1            | 1.7324             | Adder | 2.04           |
| 938754 | AE1-101 C2            | 0.8662             | Adder | 1.02           |
| 938756 | AE1-101 E1            | 3.5765             | Adder | 4.21           |
| 938757 | AE1-101 E2            | 1.7856             | Adder | 2.1            |
| 939033 | AE1-132 C             | 2.3842             | Adder | 2.8            |
| 939034 | AE1-132 E             | 1.5895             | Adder | 1.87           |
| 939591 | AE1-188 C             | 0.6143             | Adder | 0.72           |
| 939592 | AE1-188 E             | 0.3608             | Adder | 0.42           |
| 940671 | AE2-054 C (Suspended) | 0.5208             | Adder | 0.61           |
| 940672 | AE2-054 E (Suspended) | 0.3472             | Adder | 0.41           |
| 945011 | AF1-166 C             | 0.5102             | Adder | 0.6            |
| 945012 | AF1-166 E             | 0.3401             | Adder | 0.4            |
| 945441 | AF1-209 C O1          | 0.5070             | Adder | 0.6            |
| 945442 | AF1-209 E O1          | 0.3380             | Adder | 0.4            |
| 945591 | AF1-224 C             | 0.3852             | Adder | 0.45           |
| 945592 | AF1-224 E             | 0.1950             | Adder | 0.23           |
| 958071 | AF2-101 C             | -0.2947            | Adder | -0.35          |
| 958221 | AF2-116 C             | 0.6218             | Adder | 0.73           |
| 958222 | AF2-116 E             | 0.3132             | Adder | 0.37           |
| 958231 | AF2-117 C             | 1.9863             | Adder | 2.34           |
| 958232 | AF2-117 E             | 0.9929             | Adder | 1.17           |
| 958551 | AF2-146 C             | 1.4569             | 50/50 | 1.4569         |
| 958552 | AF2-146 E             | 0.9713             | 50/50 | 0.9713         |
| 958571 | AF2-148 C             | 1.2580             | 50/50 | 1.2580         |
| 958572 | AF2-148 E             | 0.8387             | 50/50 | 0.8387         |
| 958601 | AF2-151 C             | -0.2906            | Adder | -0.34          |
| 958871 | AF2-178               | 0.2673             | Adder | 0.31           |

| Bus #  | Bus          | Gendeliv MW Impact | Туре                  | Full MW Impact |
|--------|--------------|--------------------|-----------------------|----------------|
| 958881 | AF2-179      | 0.3083             | Adder                 | 0.36           |
| 958891 | AF2-180      | 0.3083             | Adder                 | 0.36           |
| 958931 | AF2-184      | 0.2534             | Adder                 | 0.3            |
| 959223 | AF2-213 BAT  | 4.9280             | Merchant Transmission | 4.9280         |
| 959241 | AF2-215 C    | 0.1427             | Adder                 | 0.17           |
| 959242 | AF2-215 E    | 0.0951             | Adder                 | 0.11           |
| 959381 | AF2-229 C    | 0.7469             | Adder                 | 0.88           |
| 959382 | AF2-229 E    | 0.6236             | Adder                 | 0.73           |
| 959773 | AF2-268 BAT  | 0.1617             | 50/50                 | 0.1617         |
| 959842 | AF2-275 E    | 0.1595             | Adder                 | 0.19           |
| 959852 | AF2-276 E    | 0.1595             | Adder                 | 0.19           |
| 962082 | AG1-052 BAT  | 0.6605             | Merchant Transmission | 0.6605         |
| 963901 | AG1-243 C    | 0.1817             | Adder                 | 0.4            |
| 963902 | AG1-243 E    | 0.0978             | Adder                 | 0.22           |
| 964641 | AG1-327 C O1 | 0.5731             | Adder                 | 1.27           |
| 964642 | AG1-327 E O1 | 0.2952             | Adder                 | 0.66           |
| 964693 | AG1-332 BAT  | 0.1533             | Merchant Transmission | 0.1533         |
| 965963 | AG1-465 BAT  | 3.9252             | Merchant Transmission | 3.9252         |
| 966152 | AG1-484 BAT  | 4.2560             | 50/50                 | 4.2560         |
| 966172 | AG1-486 BAT  | 1.6170             | 50/50                 | 1.6170         |
| 966461 | AG1-515 C    | 0.1313             | Adder                 | 0.29           |
| 966462 | AG1-515 E    | 0.1969             | Adder                 | 0.44           |
| WEC    | WEC          | 0.0936             | Confirmed LTF         | 0.0936         |
| LGEE   | LGEE         | 0.1860             | Confirmed LTF         | 0.1860         |
| CPLE   | CPLE         | 0.1870             | Confirmed LTF         | 0.1870         |
| CBM-W2 | CBM-W2       | 2.6253             | Confirmed LTF         | 2.6253         |
| NY     | NY           | 0.1924             | Confirmed LTF         | 0.1924         |
| TVA    | TVA          | 0.4074             | Confirmed LTF         | 0.4074         |
| O-066  | O-066        | 4.4485             | Confirmed LTF         | 4.4485         |
| SIGE   | SIGE         | 0.1005             | Confirmed LTF         | 0.1005         |
| CBM-S2 | CBM-S2       | 2.9232             | Confirmed LTF         | 2.9232         |
| CBM-S1 | CBM-S1       | 0.1110             | Confirmed LTF         | 0.1110         |
| G-007  | G-007        | 0.6919             | Confirmed LTF         | 0.6919         |
| MEC    | MEC          | 0.4688             | Confirmed LTF         | 0.4688         |
| LAGN   | LAGN         | 0.5093             | Confirmed LTF         | 0.5093         |
| CBM-W1 | CBM-W1       | 4.1639             | Confirmed LTF         | 4.1639         |

# 11.6.3 Index 3

| ID        | FROM<br>BUS# | FROM<br>BUS        | FROM<br>BUS<br>AREA | TO<br>BUS# | TO BUS     | TO BUS<br>AREA | CKT ID | CONT<br>NAME                    | Туре    | Rating<br>MVA | PRE<br>PROJECT<br>LOADING<br>% | POST<br>PROJECT<br>LOADING<br>% | AC DC | MW<br>IMPACT |
|-----------|--------------|--------------------|---------------------|------------|------------|----------------|--------|---------------------------------|---------|---------------|--------------------------------|---------------------------------|-------|--------------|
| 165988680 | 961480       | AF2-<br>439<br>TAP | PENELEC             | 200504     | 26CARLISLE | PENELEC        | 1      | ME-P2-<br>3-ME-<br>230-<br>005A | breaker | 159.0         | 120.44                         | 120.98                          | DC    | 1.93         |

| Bus #  | Bus                   | Gendeliv MW Impact | Туре  | Full MW Impact |
|--------|-----------------------|--------------------|-------|----------------|
| 237329 | 01CHBRG_I12           | 0.4706             | 50/50 | 0.4706         |
| 901242 | W1-045 E OP1          | 0.3063             | Adder | 0.36           |
| 930822 | AB1-127 E             | 0.3508             | Adder | 0.41           |
| 930832 | AB1-128 E             | 0.3508             | Adder | 0.41           |
| 933977 | AD1-020 EBAT          | 2.1736             | 50/50 | 2.1736         |
|        | (Suspended)           |                    |       |                |
| 934371 | AD1-061 C             | 0.3320             | Adder | 0.39           |
| 934372 | AD1-061 E             | 0.2883             | Adder | 0.34           |
| 936061 | AD2-009 C             | 2.2487             | Adder | 2.65           |
| 936062 | AD2-009 E             | 1.0238             | Adder | 1.2            |
| 936471 | AD2-062 C O1          | 9.9066             | 50/50 | 9.9066         |
| 936472 | AD2-062 E O1          | 4.9626             | 50/50 | 4.9626         |
| 938384 | AE1-071-C             | 12.4256            | 50/50 | 12.4256        |
| 938385 | AE1-071-E             | 7.6034             | 50/50 | 7.6034         |
| 938753 | AE1-101 C1            | 1.7324             | Adder | 2.04           |
| 938754 | AE1-101 C2            | 0.8662             | Adder | 1.02           |
| 938756 | AE1-101 E1            | 3.5765             | Adder | 4.21           |
| 938757 | AE1-101 E2            | 1.7856             | Adder | 2.1            |
| 939033 | AE1-132 C             | 2.3842             | Adder | 2.8            |
| 939034 | AE1-132 E             | 1.5895             | Adder | 1.87           |
| 939591 | AE1-188 C             | 0.6143             | Adder | 0.72           |
| 939592 | AE1-188 E             | 0.3608             | Adder | 0.42           |
| 940671 | AE2-054 C (Suspended) | 0.5208             | Adder | 0.61           |
| 940672 | AE2-054 E (Suspended) | 0.3472             | Adder | 0.41           |
| 945011 | AF1-166 C             | 0.5102             | Adder | 0.6            |
| 945012 | AF1-166 E             | 0.3401             | Adder | 0.4            |
| 945441 | AF1-209 C O1          | 0.5070             | Adder | 0.6            |
| 945442 | AF1-209 E O1          | 0.3380             | Adder | 0.4            |
| 945591 | AF1-224 C             | 0.3852             | Adder | 0.45           |
| 945592 | AF1-224 E             | 0.1950             | Adder | 0.23           |
| 958071 | AF2-101 C             | -0.2947            | Adder | -0.35          |
| 958221 | AF2-116 C             | 0.6218             | Adder | 0.73           |
| 958222 | AF2-116 E             | 0.3132             | Adder | 0.37           |
| 958231 | AF2-117 C             | 1.9863             | Adder | 2.34           |
| 958232 | AF2-117 E             | 0.9929             | Adder | 1.17           |
| 958551 | AF2-146 C             | 1.4569             | 50/50 | 1.4569         |
| 958552 | AF2-146 E             | 0.9713             | 50/50 | 0.9713         |
| 958571 | AF2-148 C             | 1.2580             | 50/50 | 1.2580         |
| 958572 | AF2-148 E             | 0.8387             | 50/50 | 0.8387         |
| 958601 | AF2-151 C             | -0.2906            | Adder | -0.34          |
| 958871 | AF2-178               | 0.2673             | Adder | 0.31           |

| Bus #  | Bus          | Gendeliv MW Impact | Туре                  | Full MW Impact |
|--------|--------------|--------------------|-----------------------|----------------|
| 958881 | AF2-179      | 0.3083             | Adder                 | 0.36           |
| 958891 | AF2-180      | 0.3083             | Adder                 | 0.36           |
| 958931 | AF2-184      | 0.2534             | Adder                 | 0.3            |
| 959223 | AF2-213 BAT  | 4.9280             | Merchant Transmission | 4.9280         |
| 959241 | AF2-215 C    | 0.1427             | Adder                 | 0.17           |
| 959242 | AF2-215 E    | 0.0951             | Adder                 | 0.11           |
| 959381 | AF2-229 C    | 0.7469             | Adder                 | 0.88           |
| 959382 | AF2-229 E    | 0.6236             | Adder                 | 0.73           |
| 959773 | AF2-268 BAT  | 0.1617             | 50/50                 | 0.1617         |
| 959842 | AF2-275 E    | 0.1595             | Adder                 | 0.19           |
| 959852 | AF2-276 E    | 0.1595             | Adder                 | 0.19           |
| 961481 | AF2-439 C    | 7.5080             | 50/50                 | 7.5080         |
| 961482 | AF2-439 E    | 6.9305             | 50/50                 | 6.9305         |
| 962082 | AG1-052 BAT  | 0.6605             | Merchant Transmission | 0.6605         |
| 963901 | AG1-243 C    | 0.1817             | Adder                 | 0.4            |
| 963902 | AG1-243 E    | 0.0978             | Adder                 | 0.22           |
| 964641 | AG1-327 C O1 | 0.5731             | Adder                 | 1.27           |
| 964642 | AG1-327 E O1 | 0.2952             | Adder                 | 0.66           |
| 964693 | AG1-332 BAT  | 0.1533             | Merchant Transmission | 0.1533         |
| 965963 | AG1-465 BAT  | 3.9252             | Merchant Transmission | 3.9252         |
| 966152 | AG1-484 BAT  | 4.2560             | 50/50                 | 4.2560         |
| 966172 | AG1-486 BAT  | 1.6170             | 50/50                 | 1.6170         |
| 966461 | AG1-515 C    | 0.1313             | Adder                 | 0.29           |
| 966462 | AG1-515 E    | 0.1969             | Adder                 | 0.44           |
| WEC    | WEC          | 0.0936             | Confirmed LTF         | 0.0936         |
| LGEE   | LGEE         | 0.1860             | Confirmed LTF         | 0.1860         |
| CPLE   | CPLE         | 0.1870             | Confirmed LTF         | 0.1870         |
| CBM-W2 | CBM-W2       | 2.6253             | Confirmed LTF         | 2.6253         |
| NY     | NY           | 0.1924             | Confirmed LTF         | 0.1924         |
| TVA    | TVA          | 0.4074             | Confirmed LTF         | 0.4074         |
| O-066  | O-066        | 4.4485             | Confirmed LTF         | 4.4485         |
| SIGE   | SIGE         | 0.1005             | Confirmed LTF         | 0.1005         |
| CBM-S2 | CBM-S2       | 2.9232             | Confirmed LTF         | 2.9232         |
| CBM-S1 | CBM-S1       | 0.1110             | Confirmed LTF         | 0.1110         |
| G-007  | G-007        | 0.6919             | Confirmed LTF         | 0.6919         |
| MEC    | MEC          | 0.4688             | Confirmed LTF         | 0.4688         |
| LAGN   | LAGN         | 0.5093             | Confirmed LTF         | 0.5093         |
| CBM-W1 | CBM-W1       | 4.1639             | Confirmed LTF         | 4.1639         |

# **11.7 Queue Dependencies**

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

| Queue Number | Project Name                            | Status                      |
|--------------|-----------------------------------------|-----------------------------|
| AB1-127      | St. Thomas-Guilford 34.5kV              | In Service                  |
| AB1-128      | St. Thomas-Mercersburg 34.5kV           | In Service                  |
| AD1-020      | Hunterstown-Lincoln 115 kV              | Suspended                   |
| AD1-061      | McConnelsburg-Mercersburg 34 kV         | Active                      |
| AD2-009      | McConnellsburg 138 kV                   | Active                      |
| AD2-062      | Roxbury-Greene 138 kV                   | Active                      |
| AE1-071      | Shade Gap-Roxbury 115 kV                | Active                      |
| AE1-101      | McConnellsburg-Texas Eastern 138 kV     | Active                      |
| AE1-132      | McConnellsburg 138 kV                   | Active                      |
| AE1-188      | Fayetteville 34.5 kV                    | Engineering and Procurement |
| AE2-054      | Warfordsburg 34 kV                      | Suspended                   |
| AF1-166      | Target-Chambers No.5 34.5 kV            | Engineering and Procurement |
| AF1-209      | Guilford 34.5 kV                        | Active                      |
| AF1-224      | Fayetteville 34.5 kV                    | Engineering and Procurement |
| AF2-101      | Allen 13.2 kV                           | Engineering and Procurement |
| AF2-116      | McConnellsburg 138 kV                   | Active                      |
| AF2-117      | Warfordsburg-McConnellsburg 138 kV      | Active                      |
| AF2-146      | Hill Valley-Valley REC 46 kV            | Active                      |
| AF2-148      | Shade Gap-Three Springs KTS 23 kV       | Active                      |
| AF2-151      | Dillsburg 13.2 kV                       | Engineering and Procurement |
| AF2-178      | Roxbury 23 kV II                        | In Service                  |
| AF2-179      | St. Thomas-Mercersburg 34.5 kV II       | In Service                  |
| AF2-180      | St. Thomas-Guilford 34.5 kV II          | In Service                  |
| AF2-184      | McConnelsburg-Mercersburg 34 kV II      | Active                      |
| AF2-213      | Zions View-Smith Street 115 kV          | Active                      |
| AF2-215      | Saint Thomas-LeMasters Junction 34.5 kV | Engineering and Procurement |
| AF2-229      | Roxbury 23 kV                           | Active                      |
| AF2-268      | Orrtanna 13.2 kV                        | Engineering and Procurement |
| AF2-275      | Guilford 12.47 kV                       | Active                      |
| AF2-276      | Guilford 12.47 kV                       | Active                      |
| AF2-439      | Roxbury-Carlisle 115 kV                 | Active                      |
| AG1-052      | Zionsview-Middletown 115 kV II          | Active                      |
| AG1-243      | Guilford-Fayetteville 34.5 kV           | Active                      |
| AG1-327      | West Waynesboro-East Waynesboro 138 kV  | Active                      |
| AG1-332      | Oxford 13.2 kV                          | Active                      |
| AG1-465      | North Hanover-Gitts Run 115 kV          | Active                      |
| AG1-473      | Shingletown-Lewistown 230 kV            | Active                      |
| AG1-484      | Mountain 115 kV                         | Active                      |
| AG1-486      | Orrtanna 115 kV                         | Active                      |
| AG1-515      | Guilford 138 kV                         | Active                      |
| W1-045       | Roxbury 23 kV                           | In Service                  |

# 11.8 Contingency Descriptions - Primary POI

| Contingency Name    | Contingency Definition                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ME-P1-2-ME-230-019  | CONTINGENCY 'ME-P1-2-ME-230-019' /* LINE 27HUNTRSTN 230.0 TO 27HUNTRST1 230.0 CIRCUIT 1 DISCONNECT BRANCH FROM BUS 204501 TO BUS 204575 CKT 1 /* 27HUNTRSTN 230 27HUNTRST1 230 END                                                                                                                                                                                                                      |
| PL:10:P45:102437    | CONTINGENCY 'PL:10:P45:102437'                                                                                                                                                                                                                                                                                                                                                                          |
| PL:10:P24:100548    | CONTINGENCY 'PL:10:P24:100548'                                                                                                                                                                                                                                                                                                                                                                          |
| ME-P2-3-ME-230-005A | CONTINGENCY 'ME-P2-3-ME-230-005A' /* HUNTRSTOWN-JACKSON_ HUNTRSTWN BK1 (HUNTRSTWN-105392) DISCONNECT BRANCH FROM BUS 204575 TO BUS 204502 CKT 1 /* 27HUNTRST1 230 27JACKSON 230 DISCONNECT BRANCH FROM BUS 204575 TO BUS 204501 CKT 1 /* 27HUNTRST1 230 27HUNTRSTN 230 DISCONNECT BRANCH FROM BUS 200026 TO BUS 204501 CKT 1 /* HUNTERTN 500 27HUNTRSTN 230 DISCONNECT BUS 204501 /* 27HUNTRSTN 230 END |
| ME-P2-3-ME-230-005C | CONTINGENCY 'ME-P2-3-ME-230-005C' /* HUNTRSTOWN BK1_ HUNTRSTOWN BK4 (HUNTRSTWN-B1) DISCONNECT BRANCH FROM BUS 204575 TO BUS 204501 CKT 1 /* 27HUNTRST1 230 27HUNTRSTN 230 DISCONNECT BRANCH FROM BUS 200026 TO BUS 204501 CKT 1 /* HUNTERTN 500 27HUNTRSTN 230 DISCONNECT BRANCH FROM BUS 204575 TO BUS 204539 CKT 4 /* 27HUNTRST1 230 27HUNTRSTN 115 DISCONNECT BUS 204501 /* 27HUNTRSTN 230 END       |

| Contingency Name     | Contingency Definition                                                                                                                                                                                                               |                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| AP-P1-2-WP-138-112-B | CONTINGENCY 'AP-P1-2-WP-138-112-B' 138KV DISCONNECT BRANCH FROM BUS 958230 TO BUS 235267 01WARFOR 138 DISCONNECT BRANCH FROM BUS 235267 TO BUS 235453 01CHERYR 138 DISCONNECT BRANCH FROM BUS 235267 TO BUS 236686 01WARFORDS 35 END | 3 CKT 1 /* 01WARFOR 138                            |
| ME-P1-3-ME-500-003T  | CONTINGENCY 'ME-P1-3-ME-500-003T' 27HUNTRSTN 230.00 CIRCUIT 1 DISCONNECT BRANCH FROM BUS 200026 TO BUS 204501 27HUNTRSTN 230 END                                                                                                     | /* TRAN HUNTERTN 500.00 TO . CKT 1 /* HUNTERTN 500 |
| Base Case            |                                                                                                                                                                                                                                      |                                                    |

# **12 Short Circuit Analysis - Primary POI**

The following Breakers are overdutied:

# 13 Summer Peak - Load Flow Analysis - Secondary POI

The Queue Project AG1-327 was evaluated as a 35.0 MW (Capacity 23.1 MW) injection tapping the East Waynesboro to Ringgold 138 kV line in the APS area. Project AG1-327 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-327 was studied with a commercial probability of 53.0 %. Potential network impacts were as follows:

# 13.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

#### 13.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

#### 13.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

# 13.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

# 13.5 Flow Gate Details - Secondary POI

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

| <b>13.6</b> | Contingency | <b>Descriptions -</b> | <b>Secondary POI</b> |
|-------------|-------------|-----------------------|----------------------|
|-------------|-------------|-----------------------|----------------------|

# **14 Affected Systems**

#### **14.1 NYISO**

NYISO Impacts to be determined during later study phases (as applicable).

#### 14.2 MISO

MISO Impacts to be determined during later study phases (as applicable).

# 15 Attachment 1: One Line Diagram