# Generation Interconnection System Impact Study Report

# For

# PJM Generation Interconnection Request Queue Position AC2-127

Ladysmith3 230kV 8.2 MW Capacity / 19 MW Energy

#### Introduction

This System Impact Study has been prepared in accordance with the PJM Open Access Transmission Tariff, Section 205, as well as the System Impact Study Agreement between Virginia Electric and Power Company, the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is Virginia Electric and Power Company (VEPCO).

#### **Preface**

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the IC. As a requirement for interconnection, the IC may be responsible for the cost of constructing Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an IC may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The IC is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

#### General

The IC has proposed to uprate the Ladysmith Unit 3 natural gas generating facility located in Woodford, VA (Carolina County). The installed facilities will have a total capability of 209 MW with 168 MW of this output being recognized by PJM as Capacity. This queue request is for an additional **19 MW** of energy and **8.2 MW** of capacity over the current Interconnection Agreement for Unit 3. The proposed in-service date for this project is 6/01/2017. **This study does not imply an ITO commitment to this in-service date.** 

#### **Point of Interconnection**

AC2-127 interconnects with the ITO transmission system at Ladysmith 230kV substation (Unit 3 uprate).

# **Cost Summary**

The AC2-127 project will be responsible for the following costs:

| Description                                     | <b>Total Cost</b> |   |  |
|-------------------------------------------------|-------------------|---|--|
| Attachment Facilities                           | \$                | 0 |  |
| Direct Connection Network Upgrades              | \$                | 0 |  |
| Non Direct Connection Network Upgrades          | \$                | 0 |  |
| Allocation for New System Upgrades              | \$                | 0 |  |
| Contribution for Previously Identified Upgrades | \$                | 0 |  |
| Total Costs                                     | \$                | 0 |  |

#### **Attachment Facilities**

Existing Attachment Facilities are sufficient. The single line is shown below in **Attachment 1**.

#### **Direct Connection Cost Estimate:**

None

#### **Non-Direct Connection Cost Estimate:**

None

# **System Reinforcements**

1. Baseline projects b3027.1 and b3027.2 were included in the stability evaluation for the AC2-125\_126\_127\_128\_129 uprates, and are required to be in service for these projects to be inservice. The expected ISD for the baseline projects is 06/01/2021.

| Baseline<br>Project | Description                                                                                                                   | In-Service<br>Date |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
| b3027.1             | Add a 2nd 500/230 kV 840 MVA transformer at Dominion's Ladysmith Substation.                                                  | 6/1/2021           |
| b3027.2             | Re-conductor Line #2089 between Ladysmith and Ladysmith CT Substations to increase the line rating from 1047 MVA to 1225 MVA. | 6/1/2021           |

**2.** IC to provide the Transmission Provider proposed measures to address the reactive capability deficiency identified in **Attachment 2** on or before **May 15, 2019**. Transmission Provider and Interconnected Transmission Owner will evaluate the proposed solution(s) as part of the Facilities Study.

# **Interconnection Customer Requirements**

ITO's Facility Connection Requirements as posted on PJM's website <a href="http://www.pjm.com/~/media/planning/plan-standards/private-dominion/facility-connection-requirements1.ashx">http://www.pjm.com/~/media/planning/plan-standards/private-dominion/facility-connection-requirements1.ashx</a>

# **Revenue Metering and SCADA Requirements**

## **PJM Requirements**

The IC will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Attachment O, Appendix 2, Section 8.

#### **Interconnected Transmission Owner Requirements**

Metering and SCADA/Communication equipment must meet the requirements outlined in section 3.1.6 Metering and Telecommunications of ITO's Facility Connection Requirement NERC Standard FAC-001 which is publically available at <a href="https://www.dom.com">www.dom.com</a>.

# **Network Impacts**

Queue Project AC2-127 was evaluated as a 19 MW (Capacity 8.2 MW) uprate to Ladysmith Unit 3 in the ITO area. AC2-127 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AC2-127 was studied with a commercial probability of 100%. Potential network impacts are identified in this section.

# **Summer Peak Analysis - 2020**

#### **Generator Deliverability**

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

#### Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

#### **Contribution to Previously Identified Overloads**

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

# **Delivery of Energy Portion of Interconnection Request**

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The IC can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

None

# **Short Circuit**

(Summary of impacted circuit breakers)

None

#### Stability and Reactive Power Requirement for Low Voltage Ride Through

(Summary of the VAR requirements based upon the results of the dynamic studies)

#### **Stability**

Baseline projects b3027.1 and b3027.2 were included in the stability evaluation for the AC2-125\_126\_127\_128\_129 uprates, and are required to be in service for these projects to be inservice. **The expected ISD for the baseline projects is 06/01/2021.** 

#### Reactive Power Assessment

See Attachment 2 for the Reactive Power Assessment for AC2-125 through AC2-129.

#### **Affected System Analysis & Mitigation**

None

## **Light Load Analysis - 2020**

None

# **System Reinforcements**

#### **Short Circuit**

(Summary form of Cost allocation for breakers will be inserted here if any)

None

#### **Stability and Reactive Power Requirement**

(Results of the dynamic studies should be inserted here)

#### **Stability**

Baseline projects b3027.1 and b3027.2 were included in the stability evaluation for the AC2-125\_126\_127\_128\_129 uprates, and are required to be in service for these projects to be inservice. The expected ISD for the baseline projects is 06/01/2021.

| Baseline<br>Project | Description                                                                                                                   | In-Service<br>Date |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|
| b3027.1             | Add a 2nd 500/230 kV 840 MVA transformer at Dominion's Ladysmith Substation.                                                  | 6/1/2021           |
| b3027.2             | Re-conductor Line #2089 between Ladysmith and Ladysmith CT Substations to increase the line rating from 1047 MVA to 1225 MVA. | 6/1/2021           |

#### Reactive Power Assessment

IC to provide the Transmission Provider proposed measures to address the reactive capability deficiency identified in **Attachment 2** on or before **May 15, 2019**. Transmission Provider and Interconnected Transmission Owner will evaluate the proposed solution(s) as part of the Facilities Study.

#### **Summer Peak Load Flow Analysis Reinforcements**

#### **New System Reinforcements**

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None

#### **Contribution to Previously Identified System Reinforcements**

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)

None

# **Light Load Load Flow Analysis Reinforcements**

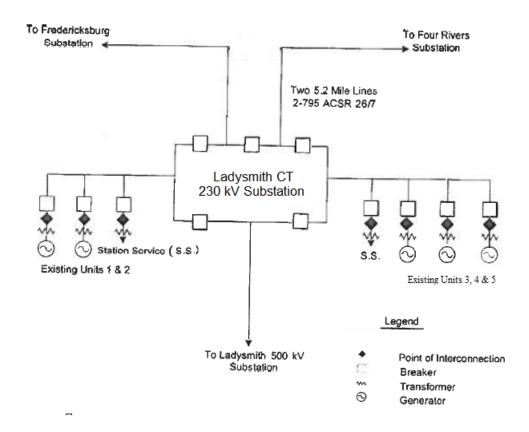
#### **New System Reinforcements**

(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

None

# **Contribution to Previously Identified System Reinforcements**

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study)


None

# **Incremental Capacity Transfer Rights (ICTRs)**

This project does not have cost allocation towards any new network upgrades so no study is required for an increase to the CETL in the 2020/2021 BRA case.

#### Attachment 1.

# System Configuration



Note: this AC2-127 Queue is to uprate the Existing Ladysmith Unit 3

# Attachment 2. AC2-125\_126\_127\_128\_129 Reactive power assessment

#### January 2019

#### **Description**

Generator Interconnection Request AC2-125\_126\_127\_128\_129 (95 MW uprate to existing Ladysmith units 1 to 5, 19MW each) is for a 1045 Maximum Facility Output (MFO) natural gas fired combustion turbine generation facility. This request results in an increase to Maximum Facility Output (MFO) from 950 MW to 1045 MW.

AC2-125\_126\_127\_128\_129 consists of 5 CT's with a Point of Interconnection (POI) at Ladysmith 230 kV station in the Dominion system.

|             | WINTER |      |     |  |  |
|-------------|--------|------|-----|--|--|
|             | Gross  | Load | Net |  |  |
| Existing MW | 191    | ~1   | 190 |  |  |
| Increase MW | 19     |      | 19  |  |  |
| Total MW    | 210    | ~1   | 209 |  |  |

|             | SUMMER |      |       |  |  |
|-------------|--------|------|-------|--|--|
|             | Gross  | Load | Net   |  |  |
| Existing MW | 152.1  | ~1   | 151.1 |  |  |
| Increase MW | 14.9   |      | 14.9  |  |  |
| Total MW    | 167    | ~1   | 166   |  |  |

#### **Reactive Power Design Criteria**

The existing MW portion of each of the Ladysmith units shall retain its existing ability to maintain a power factor of at least 0.95 leading to 0.90 lagging measured at the generator's terminals.

The increases related to AC2-125\_126\_127\_128\_129 shall be designed with the ability to maintain a power factor of at least 1.0 (unity) to 0.90 lagging measured at the generator's terminals.

#### Reactive power assessment AC2-125\_126 (CT 1 & 2)

AC2-125\_126 queue projects were evaluated for compliance with the reactive power requirements of the OATT.

Specific requirements are summarized in Tables 1 and 2. The design capability curves for the units are provided in Appendix A. Available reactive power was obtained based on design capability curve information. The 40 C Cold Gas curve was used for the CT 1 and 2 for winter and summer reactive capability calculations.

#### **Reactive Capability (Winter):**

Table 1. AC2-125\_126: Reactive Power Assessment for CT 1 & 2 at Gross Winter MW

| CT 1 & 2                            | 234 | MVA         |               |             |             |
|-------------------------------------|-----|-------------|---------------|-------------|-------------|
|                                     |     | -           | red PF<br>nge |             |             |
|                                     | MW  | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 191 | 0.9         | 0.95          | 92.5        | 62.7        |
| MW increase (Gross)                 | 19  | 0.9         | 1             | 9.2         | 0.00        |
| Total Requirements (Gross)          | 210 |             |               | 101.7       | 62.7        |
| Available reactive power at 210 MW* |     |             |               | 103         | 79          |
| Total deficiency in MVAR            |     |             |               | 1.3         | 16.3        |

<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

#### **Reactive Capability (Summer):**

Table 2. AC2-125\_126: Reactive Power Assessment for CT 1 & 2 at Gross Summer MW

| CT 1 & 2                            | 234   | MVA         |               |             |             |
|-------------------------------------|-------|-------------|---------------|-------------|-------------|
|                                     |       | _           | red PF<br>nge |             |             |
|                                     | MW    | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 152.1 | 0.9         | 0.95          | 73.66       | 50          |
| MW increase (Gross)                 | 14.9  | 0.9         | 1             | 7.21        | 0.00        |
| Total Requirements (Gross)          | 167   |             |               | 80.87       | 50          |
| Available reactive power at 167 MW* |       |             |               | 145         | 90          |
| Total deficiency in MVAR            |       |             | [             | 64.13       | 40          |

<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

The AC2-125\_126 queue projects were found to be **compliant** for the MFO values requested for Winter and **compliant** for the MFO values requested for Summer based on the suggested operating point and the project design capability.

#### Reactive power assessment AC2-127\_128 (CT 3 & 4)

AC2-127\_128 queue projects were evaluated for compliance with the reactive power requirements of the OATT.

Specific requirements are summarized in Tables 3 and 4. The design capability curves for the units are provided in Appendix A. Available reactive power was obtained based on design capability curve information. The 40 C Cold Gas curve was used for the CT 3 and 4 for winter and summer reactive capability calculations.

#### **Reactive Capability (Winter):**

Table 3. AC2-127\_128: Reactive Power Assessment for CT 3 & 4 at Gross Winter MW

| CT 3 & 4                            | 226 | MVA         |               |             |             |
|-------------------------------------|-----|-------------|---------------|-------------|-------------|
|                                     |     | _           | red PF<br>nge |             |             |
|                                     | MW  | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 191 | 0.9         | 0.95          | 92.5        | 62.7        |
| MW increase (Gross)                 | 19  | 0.9         | 1             | 9.2         | 0.00        |
| Total Requirements (Gross)          | 210 |             |               | 101.7       | 62.7        |
| Available reactive power at 210 MW* |     | ,           |               | 85          | 73          |
| Total deficiency in MVAR            |     |             |               | 16.7        | 10.3        |

<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

#### **Reactive Capability (Summer):**

Table 4. AC2-127\_128: Reactive Power Assessment for CT 3 & 4 at Gross Summer MW

| CT 3 & 4                            | 226   | MVA         |               |             |             |
|-------------------------------------|-------|-------------|---------------|-------------|-------------|
|                                     |       | _           | red PF<br>nge |             |             |
|                                     | MW    | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 152.1 | 0.9         | 0.95          | 73.66       | 50          |
| MW increase (Gross)                 | 14.9  | 0.9         | 1             | 7.21        | 0.00        |
| Total Requirements (Gross)          | 167   |             |               | 80.87       | 50          |
| Available reactive power at 167 MW* |       |             |               | 135         | 85          |
| Total deficiency in MVAR            |       |             |               | 54.13       | 35          |

<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

The AC2-127\_128 queue projects were found to be **deficient** for the MFO values requested for Winter and **compliant** for the MFO values requested for Summer based on the suggested operating point and the project design capability.

#### Reactive power assessment AC2-129 (CT 5)

AC2-129 queue project was evaluated for compliance with the reactive power requirements of the OATT.

Specific requirements are summarized in Tables 5 and 6. The design capability curves for the units are provided in Appendix A. Available reactive power was obtained based on design capability curve information. The 40 C Cold Gas curve was used for the CT 5 for winter and summer reactive capability calculations.

#### **Reactive Capability (Winter):**

Table 5. AC2-129: Reactive Power Assessment for CT 5 at Gross Winter MW

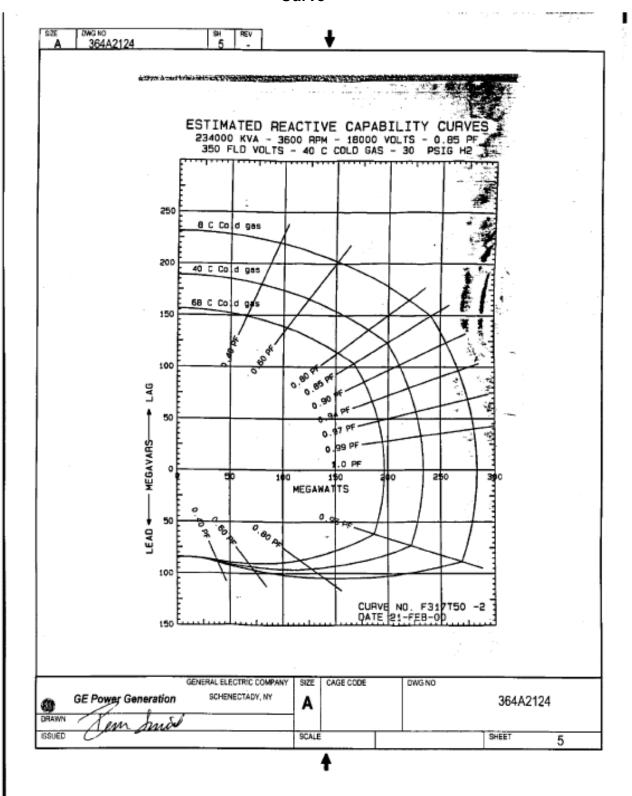
| CT 5                                | 226 | MVA         |               |             |             |
|-------------------------------------|-----|-------------|---------------|-------------|-------------|
|                                     |     | _           | red PF<br>nge |             |             |
|                                     | MW  | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 191 | 0.9         | 0.95          | 92.5        | 62.7        |
| MW increase (Gross)                 | 19  | 0.9         | 1             | 9.2         | 0.00        |
| Total Requirements (Gross)          | 210 |             |               | 101.7       | 62.7        |
| Available reactive power at 210 MW* |     |             |               | 85          | 70          |
| Total deficiency in MVAR            |     |             |               | 16.7        | 7.3         |

<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

#### **Reactive Capability (Summer):**

Table 6. AC2-129: Reactive Power Assessment for CT 5 at Gross Summer MW

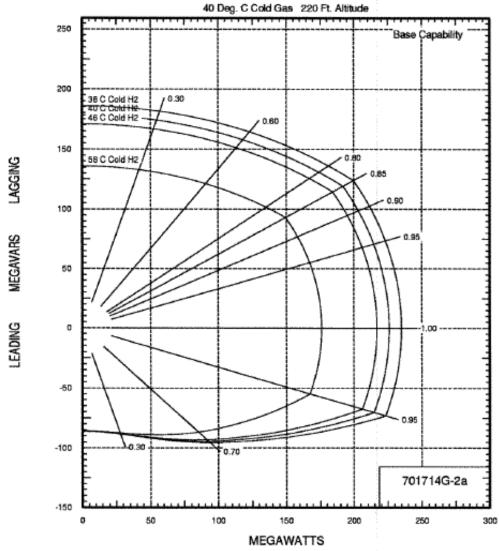
| CT 5                                | 226   | MVA         |               |             |             |
|-------------------------------------|-------|-------------|---------------|-------------|-------------|
|                                     |       | -           | red PF<br>nge |             |             |
|                                     | MW    | Laggin<br>g | Leadin<br>g   | MAX<br>MVAR | MIN<br>MVAR |
| Existing MW (Gross)                 | 152.1 | 0.9         | 0.95          | 73.66       | 50          |
| MW increase (Gross)                 | 14.9  | 0.9         | 1             | 7.21        | 0.00        |
| Total Requirements (Gross)          | 167   |             |               | 80.87       | 50          |
| Available reactive power at 167 MW* |       |             |               | 135         | 85          |
| Total deficiency in MVAR            |       |             |               | 54.13       | 35          |


<sup>\*</sup>The available reactive power capability is determined using the design capability curve of the machine at the machine gross active power output.

The AC2-129 queue project was found to be **deficient** for the MFO values requested for Winter and **compliant** for the MFO values requested for Summer based on the suggested operating point and the project design capability.

#### **Conclusions**

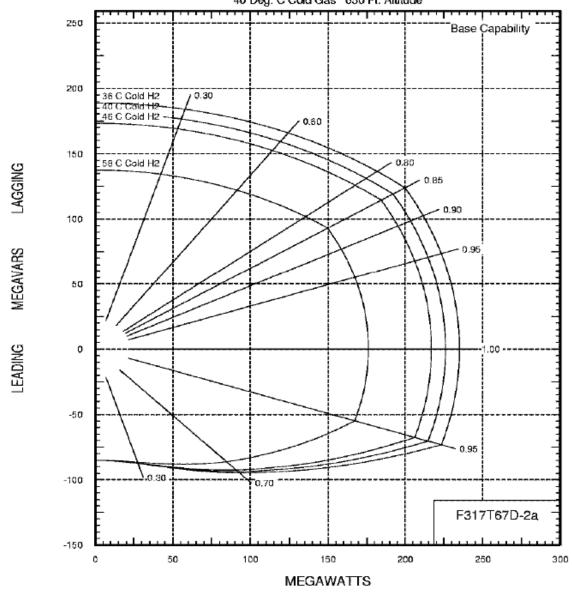
The combined Ladysmith CT units at the uprated MW's were found to be **deficient by 47.5 MVAR lagging for Winter** MFO calculations


# APPENDIX A: Ladysmith CT 1 & 2 Reactive Curve



#### Ladysmith CT 3 & 4 Reactive Curve

#### ESTIMATED REACTIVE CAPABILITY CURVES


2 Pole 3600 RPM 226000 kVA 18000 Volts 0.850 PF 0.500 SCR 30.00 PSIG H2 Pressure 375 Volts Excitation



# **Ladysmith CT 5 Reactive Curve**

#### ESTIMATED REACTIVE CAPABILITY CURVES

2 Pole 3600 RPM 226000 kVA 18000 Volts 0.850 PF
 0.500 SCR 30.00 PSIG H2 Pressure 330 Volts Excitation
 40 Deg. C Cold Gas 650 Ft. Altitude

