# Generation Interconnection System Impact Study Report

# For

# PJM Generation Interconnection Request Queue Position AD1-100

Wilton Center—Loretto 345 kV

And

Braidwood—Davis Creek 345 kV

Revision 2: May 2022 Revision 1: June 2021

**Revision 0: December 2019** 

#### **Preface**

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

Cost allocation rules can be found in PJM Manual 14A, Attachment B.

The Interconnection Customer seeking to interconnect a wind generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per item 5.iv. of Schedule H to the Interconnection Service Agreement.

An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

1

#### General

Queue AD1-100 project is an Illinois Generation LLC ("Illinois Generation") proposal to connect an 850 MW Energy (150 MW Capacity) Wind facility to be located in Ford County, IL. They will be calling the facility Illinois Generation. It is proposed in the Interconnection Request (Attachment N) that the point of interconnection to be studied as a new interconnecting substation looping in the Wilton Center-Loretto 345kV line and one of the Braidwood-Davis Creek 345kV lines (the Blue). Illinois Wind has proposed a service date for this project of September 30, 2020.

Preliminary impacts on the MISO member transmission systems are included in this analysis, and will be continue in the Facilities Study Phase.

## **Revision History:**

Revision 2: May 2022 – Updated report to include retooled loadflow analysis result

Revision 1: June 2021 – Updated report to include retooled loadflow analysis results.

Revision 0: December 2019

#### **Point of Interconnection**

The PJM Queue Position AD1-100, an 850 MW wind farm, proposes to interconnect with the ComEd transmission system by tapping into Wilton Center-Loretto 345kV line 11212 and Braidwood-Davis Creek 345kV line 2002.

## **Network Upgrade Cost Estimates**

The AD1-100 project will be responsible for the following costs.

| Description                                                                     | Cost Estimate |
|---------------------------------------------------------------------------------|---------------|
| Allocation towards System Network Upgrade Costs (PJM Identified - Summer Peak)* | \$6,132,054   |
| Allocation towards System Network Upgrade Costs (PJM Identified - Light Load)*  | \$50,000,000  |
| Total Costs                                                                     | \$56,132,054  |

<sup>\*</sup>As your project progresses through the study process and other projects modify their request or withdraw, then your cost allocation could change.

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Note 1: PJM Open Access Transmission Tariff (OATT) section 217.3A outline cost allocation rules. The rules are further clarified in PJM Manual 14A Attachment B. The allocation of costs for a network upgrade will start with the first Queue project to cause the need for the upgrade. Later queue projects will receive cost allocation contingent on their contribution to the violation and are allocated to the queues that have not closed less than 5 years following the execution of the first Interconnection Service Agreement which identifies the need for this upgrade.

Note 2: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc., the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required

#### **Attachment Facilities**

The AD1-100 wind farm generator lead interconnection to a new 345kV Interconnection Substation would require one 345kV line MOD, a dead-end structure and revenue metering as shown in the one line diagram.

The cost for the attachment facilities is estimated at \$1M.

| Scope of Work                                                           | Cost Estimate |
|-------------------------------------------------------------------------|---------------|
| Installation of one 345kV line MOD, a dead-end structure and one set of |               |
| revenue metering (see notes below on cost estimate)                     | \$1,000,000   |

#### **Direct Connection Cost Estimate**

In order to accommodate interconnection of AD1-100, a new 345kV Interconnection Substation would need to be built looping in the Wilton Center-Loretto 345kV line 11212 and Braidwood-Davis Creek 345kV line 2002.

The scope of work includes installation of eight (8) 345kV circuit breakers in 'breaker-and-a-half' bus configuration to create five line terminations and tie in the Interconnection Substation to Wilton Center-Loretto 345kV line 11212 and Braidwood-Davis Creek 345kV line 2002, as shown in the one line diagram below.

The Interconnection Customer is responsible for constructing all of the facilities on the Interconnection Customer side of the point of interconnection outside of the substation. It will be Interconnection Customer's responsibility to obtain the site for the Interconnection Substation and right-of-way between the Interconnection Substation and the 345kV transmission lines. In the event that the IC exercises the option to build the interconnecting substation, the IC will be required to construct all interconnection facilities that will be turned over to ComEd in accordance with ComEd published standards.

ComEd would design, engineer and construct the tie-in of the Interconnection Substation to Wilton Center-Loretto 345kV line 11212 and Braidwood-Davis Creek 345kV line 2002. The preliminary cost estimate for Direct Connection Network Upgrade is given in the following tables.

For Option to Build Direct Connection cost estimates:

| Scope of Work                                                        | Cost Estimate |
|----------------------------------------------------------------------|---------------|
| Installation of a new 345kV substation as described above            | N/A           |
| Transmission lines tie in work (foundations, structures, conductors) | \$6,000,000   |
| ComEd oversight and testing                                          | \$2,000,000   |
| Total Cost Estimate (see notes below on cost estimate)               | \$8,000,000   |

For ComEd building the interconnecting substation cost estimates:

| Scope of Work                                                        | Cost Estimate |
|----------------------------------------------------------------------|---------------|
| Installation of a new 345kV substation as described above            | \$30,000,000  |
| Transmission lines tie in work (foundations, structures, conductors) | \$6,000,000   |
| Total Cost Estimate (see notes below on cost estimate)               | \$36,000,000  |

ComEd would take approximately 24-months to construct after the ISA / ICSA are signed.

#### **Non-Direct Connection Network Upgrades**

The integration of the new 345kV Interconnection Substation would require relay/communications/SCADA upgrades at Wilton Center TSS 112, Loretto TSS 93, Braidwood Station 20 and Davis Creek TSS 86. The ComEd cost is given below:

| Scope of Work                                                                                                                 | Cost Estimate |
|-------------------------------------------------------------------------------------------------------------------------------|---------------|
| Relay/communications/SCADA upgrades at Wilton Center TSS 112,<br>Loretto TSS 93, Braidwood Station 20 and Davis Creek TSS 86. | \$3,000,000   |
| Total Cost Estimate (see notes below on cost estimate)                                                                        | \$3,000,000   |

#### **Notes on Cost Estimate:**

1) These estimates are Order-of-Magnitude estimates of the costs that ComEd would bill to the customer for this interconnection. These estimates are based on a one-line electrical diagram of the project and the information provided by the Interconnection Customer.

- 2) There were no site visits performed for these estimates. There may be costs related to specific site related issues that are not identified in these estimates. The site reviews will be performed during the Facilities Study or during detailed engineering.
- 3) These estimates are not a guarantee of the maximum amount payable by the Interconnection Customer and the actual costs of ComEd's work may differ significantly from these estimates. Per the PJM Tariff, Interconnection Customer will be responsible for paying all actual costs of ComEd's work.
- 4) The Interconnection Customer is responsible for all engineering, procurement, testing and construction of all equipment on the Interconnection Customer's side of the Point of Interconnection (POI).

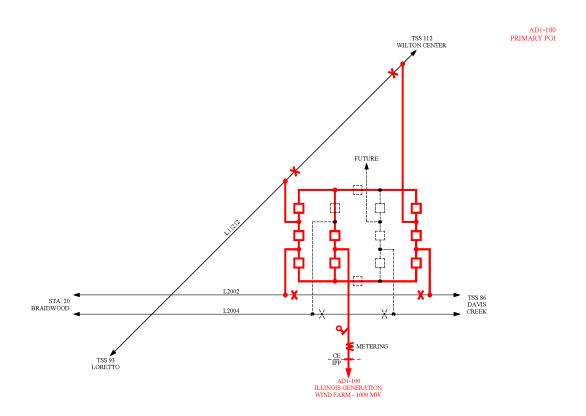



Figure 1. Single Line Diagram 1

#### **Network Impacts**

The Queue Project AD1-100 was evaluated as an 850.0 MW (Capacity 150.0 MW) injection tapping both the Wilton Center (Blue) to Loretto 345kV line and the Braidwood (Blue) to Davis Creek (Blue) 345kV line in the ComEd area. Project AD1-100 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AD1-100 was studied with a commercial probability of 100%. Potential network impacts were as follows:

# **Summer Peak Analysis - 2021**

#### **Generator Deliverability**

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

#### **Multiple Facility Contingency**

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

| Overload |      | Contingency   | Affected |                      | В      | us     |         | Power | Load    | ling % | Rat  | ing  | MW           | Flowgate |
|----------|------|---------------|----------|----------------------|--------|--------|---------|-------|---------|--------|------|------|--------------|----------|
| Number   | Type | Name          | Area     | Facility Description | From   | То     | Circuit | Flow  | Initial | Final  | Type | MVA  | Contribution | Appendix |
|          |      |               |          | BRAIDWOOD; B-        |        |        |         |       |         |        |      |      |              |          |
|          |      |               |          | BRAIDWOOD; R 345 kV  |        |        |         |       |         |        |      |      |              |          |
| 1        | LFFB | ADD AD1-100 5 | CE - CE  | line                 | 270670 | 270671 | 1       | AC    | 82.05   | 107.26 | ER   | 1341 | 342.8        | 1        |
|          |      |               |          | AD1-100 TAP-         |        |        |         |       |         |        |      |      |              |          |
|          |      |               |          | BRAIDWOOD; B 345 kV  |        |        |         |       |         |        |      |      |              |          |
| 2        | LFFB | ADD AD1-100 5 | CE - CE  | line                 | 934730 | 270670 | 1       | AC    | 86.59   | 128.83 | ER   | 1341 | 591.2        | 2        |

Notes:

Violation 1: ComEd SSTE rating is 1837 MVA (Not a violation)

Violation 2: ComEd SSTE rating is 1837 MVA (Not a violation)

#### **Contribution to Previously Identified Overloads**

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

| Overload | С    | ontingency     | Affected  |                             | В      | us     |         | Power | Load    | ing %  | Rat  | ing  | MW           | <b>Flowgate</b> |
|----------|------|----------------|-----------|-----------------------------|--------|--------|---------|-------|---------|--------|------|------|--------------|-----------------|
| Number   | Type | Name           | Area      | <b>Facility Description</b> | From   | To     | Circuit | Flow  | Initial | Final  | Type | MVA  | Contribution | <b>Appendix</b> |
|          |      | AEP_P4_#2978_0 | MISO NIPS | 17STILLWELL-                |        |        |         |       |         |        |      |      |              |                 |
| 3        | LFFB | 5DUMONT 765    | - AEP     | 05DUMONT 345 kV line        | 255113 | 243219 | 1       | AC    | 100.31  | 108.11 | ER   | 1409 | 128.38       | 3               |
|          |      | AEP_P4_#3128_0 | MISO AMIL | 7CASEY-05SULLIVAN           |        |        |         |       |         |        |      |      |              |                 |
| 4        | LFFB | 5EUGENE 345    | - AEP     | 345 kV line                 | 346809 | 247712 | 1       | AC    | 122.81  | 125.68 | ER   | 1466 | 48.55        | 4               |

#### **Stability and Steady-State Voltage Requirements**

Generator Interconnection Request AD1-100 is for an 850 MW Maximum Facility Output (MFO) wind generating facility consisting of 222 x 3.83 MW General Electric GE3.83-130 wind turbines. AD1-100 has a Point of Interconnection (POI) on a tap of the Braidwood – Davis Creek 345 kV line and Loretto – Wilton Center 345 kV line in the Commonwealth Edison (ComEd) system, Kankakee County, Illinois.

This report describes a dynamic simulation analysis of AD1-100 as part of the overall system impact study.

The load flow scenarios for the analysis were based on the RTEP 2021 summer peak and 2021 RTEP light load cases, modified to include applicable queue projects. AD1-100 has been dispatched online at maximum power output.

AD1-100 was tested for compliance with NERC, PJM, Transmission Owner and other applicable criteria. Steady-state condition and 369 contingencies were studied for each case, each with a 20 second simulation time period. Studied faults included:

- a) Steady state operation (20 second);
- b) Three-phase faults with normal clearing time during normal operation and during maintenance outages;
- c) Three-phase faults with single phase stuck breaker (IPO breakers);
- d) Three-phase faults with three phase stuck breaker (GO breakers);

e) Three-phase faults with loss of multi-circuit tower line;

Single-phase faults placed at 80% of the line with delayed (Zone 2) clearing at line end were not considered due to the presence of redundant relays on the ComEd 345 kV transmission network.

No relevant bus or high speed reclosing contingencies were identified.

For all simulations, the queue project under study along with the rest of the PJM system were required to maintain synchronism and with all states returning to an acceptable new condition following the disturbance.

For all of the fault contingencies tested on the 2021 peak load case:

- a) AD1-100 was able to ride through the faults (except for faults where protective action trips a generator(s)),
- b) Post-contingency oscillations were positively damped with a damping margin of at least 3%.
- c) Following fault clearing, all bus voltages recovered to a minimum of 0.7 per unit after 2.5 seconds (except where protective action isolates that bus).
- d) No transmission element tripped, other than those either directly connected or designed to trip as a consequence of that fault.

No mitigations were found to be required due to instability, however it was observed that AD1-100 is deficient in lagging power factor requirement by 116.0 MVAr. This may need to be addressed through reactive compensation.

#### **Short Circuit**

(Summary of impacted circuit breakers)

No violations, or contributions >3% to previously overdutied breakers were identified.

#### **Affected System Analysis & Mitigation**

#### **MISO Impacts:**

The Preliminary MISO affected system study identified AD1-100 as needing a contingent MISO facility, specifically, MTEP upgrade 2237 which constructs a new Pana – Mt Zion – Kansas – Sugar Creek 345 kV line. The expected completion date of MTEP upgrade 2237 is December 2020. Final MISO impacts to be determined by MISO during the Facilities Study phase.

#### **Summer Peak Delivery of Energy Portion of Interconnection Request**

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Only the most severely overloaded conditions are listed. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed, which will study all overload conditions associated with the overloaded element(s) identified.

| Overload |      | Contingency       |                 |                                    | В      | us     |         |                   | Load    | ing %  | Rat  | ting | MW           |
|----------|------|-------------------|-----------------|------------------------------------|--------|--------|---------|-------------------|---------|--------|------|------|--------------|
| Number   | Type | Name              | Affected Area   | Facility Description               | From   | То     | Circuit | <b>Power Flow</b> | Initial | Final  | Туре | MVA  | Contribution |
| 5        | N-1  | COMED_P1-2_695_B2 | MISO NIPS - AEP | 17STILLWELL-05DUMONT 345 kV line   | 255113 | 243219 | 1       | AC                | 95.93   | 103.95 | NR   | 1409 | 132          |
| 6        | N-1  | AEP_P1-2_#286     | MISO AMIL - AEP | 7CASEY-05SULLIVAN 345 kV line      | 346809 | 247712 | 1       | AC                | 120.3   | 123.25 | NR   | 1466 | 50.2         |
| 7        | N-1  | AD1-100B          | CE - CE         | AD1-100 TAP-WILTON; B 345 kV line  | 934720 | 270926 | 1       | AC                | 93.45   | 127.42 | ER   | 1528 | 537.61       |
| 8        | N-1  | AD1-100B          | CE - CE         | AD1-133 TAP-DRESDEN; R 345 kV line | 935000 | 270717 | 1       | AC                | 92.69   | 99.5   | ER   | 1528 | 109.1        |

#### **Short Circuit Reinforcements**

(Summary form of Cost allocation for breakers will be inserted here if any)

None

## **Stability and Reactive Power Requirement Reinforcement**

(Results of the dynamic studies should be inserted here)

None

# **Summer Peak Load Flow Analysis Reinforcements**

New System Reinforcements
(Upgrades required to mitigate reliability criteria violations, i.e. Network Impacts, initially caused by the addition of this project generation)

| Facility                               | Upgrade I                                                                                             | Description                                                                                                                    |                         |                                        |        | Cost        | Cost<br>Allocation | Upgrade<br>Number |
|----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|--------|-------------|--------------------|-------------------|
| 7CASEY-<br>05SULLIVAN 345<br>kV Ckt. 1 | by requiring additional 3 345 kV line Cost: \$5,00 Time Estim Ratings: N/ The cost alle Queue AD1-100 | N5808<br>2: AEP can eliminate<br>3: a new string, expand<br>45 kV circuit breaker<br>between the two new<br>0,000<br>nate: N/A | ling the 34 s, and repo | 5 kV buses, add two sitioning the Buns | vo (2) | \$5,000,000 | \$5,000,000        | N5808             |
|                                        |                                                                                                       | SE rating is 1635 MV                                                                                                           |                         |                                        |        |             |                    |                   |
|                                        | <b>Total Cost</b>                                                                                     |                                                                                                                                |                         |                                        |        | \$5,000,000 | \$5,000,000        |                   |

#### **Contribution to Previously Identified System Reinforcements**

(Overloads initially caused by prior Queue positions with additional contribution to overloading by this project. This project may have a % allocation cost responsibility which will be calculated and reported for the Impact Study) (Summary form of Cost allocation for transmission lines and transformers will be inserted here if any)

| Facility                                       | Upgrade l                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | Cost        | Cost<br>Allocation | Upgrade<br>Number |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|--------------------|-------------------|
| 17STILLWELL-<br>05DUMONT 345<br>kV Ckt. 1      | Studies To 20 with a cu frame and the estimate is 5 Dumont wa Based on up mile section estimate is 6 years after 6 Cost: \$1,61 Time Estim Ratings: 17 | N4058  2: Sag study results from Sag mitigation work with the removal of swing a \$1.613M. New SE rative trap.  2: Sag study results from the removal of swing a \$1.613M. New SE rative trap.  3: Sag study results from the sag study results | will include<br>acement of<br>angle brack<br>ing will be<br>lts, the cost<br>d necessary<br>constructio<br>CSA. PJM | e the replacement of tower 24 with a creates on 2 structures a 1718 MVA limited to rebuild the entry is \$20M. Sag stuntime for the rebundance of the rebunda | of tower ustom H-s. Cost ed by a ire 8.6 dy time ild is 2-3 | \$1,613,000 | \$1,132,054        | N4058             |
|                                                | Queue                                                                                                                                                  | MW Contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost %                                                                                                              | Cost (\$1.613M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |             |                    |                   |
|                                                | AD1-098                                                                                                                                                | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.60%                                                                                                               | \$122,551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                           |             |                    |                   |
|                                                | AD1-100                                                                                                                                                | 128.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.18%                                                                                                              | \$1,132,054<br>\$358,395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                           |             |                    |                   |
| PRAINWOOD, R                                   |                                                                                                                                                        | SE rating is 1779 MV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | ¢o.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                          |             |                    |                   |
| BRAIDWOOD; B-<br>BRAIDWOOD; R<br>345 kV Ckt. 1 | Comed SS                                                                                                                                               | ΓE rating 1837 MVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |             |                    |                   |
| &                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |             |                    |                   |
| AD1-100 TAP-<br>BRAIDWOOD; B<br>345 kV Ckt. 1  |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |             |                    |                   |
|                                                | <b>Total Cost</b>                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | \$1,613,000 | \$1,132,054        |                   |

# **Summer Peak Load Flow Contingencies**

|                       | Option 1                                                                                  |             |
|-----------------------|-------------------------------------------------------------------------------------------|-------------|
| Contingency Name      | Description  CONTINGENCY 'AD1-100B'                                                       |             |
| AD1-100B              | OPEN BRANCH FROM BUS 934725 TO BUS 934730 CKT 1                                           |             |
| AD 1-100D             |                                                                                           |             |
|                       | END<br>CONTINGENCY 'ADD AD1-100 5'                                                        |             |
| ADD AD1-100 5         | OPEN BRANCH FROM BUS 934730 TO BUS 270710 CKT 1<br>DAVIS CREEK                            | / AD1-100 - |
| ADD AD1-100 5         | OPEN BRANCH FROM BUS 934720 TO BUS 270926 CKT 1<br>WILTON                                 | / AD1-100 - |
|                       | END                                                                                       |             |
|                       | CONTINGENCY 'AEP_P1-2_#286'                                                               |             |
| AEP_P1-2_#286         | OPEN BRANCH FROM BUS 243221 TO BUS 348885 CKT 1<br>05EUGENE 345 348885 7BUNSONVILLE 345 1 | / 243221    |
|                       | END                                                                                       |             |
|                       | CONTINGENCY 'AEP_P4_#2978_05DUMONT 765'                                                   |             |
| AEP_P4_#2978_05DUMONT | OPEN BRANCH FROM BUS 243206 TO BUS 243207 CKT 1<br>05DUMONT 765 05GRNTWN                  | / 243206    |
| 765                   | OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 1<br>05DUMONT 765 270644 WILTON ; 765 1     | / 243206    |
|                       | END                                                                                       |             |
|                       | CONTINGENCY 'AEP_P4_#3128_05EUGENE 345'                                                   |             |
| AEP_P4_#3128_05EUGENE | OPEN BRANCH FROM BUS 243221 TO BUS 249504 CKT 1 05EUGENE 345 249504 08CAYSUB 345 1        | / 243221    |
| 345                   | OPEN BRANCH FROM BUS 243221 TO BUS 348885 CKT 1<br>05EUGENE 345 348885 7BUNSONVILLE 345 1 | / 243221    |
|                       | END                                                                                       |             |
|                       | CONTINGENCY 'COMED_P1-2_695_B2'                                                           |             |
| COMED_P1-2_695_B2     | OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 1 05DUMONT 765 270644 WILTO; 765 1          | / 243206    |
|                       | END                                                                                       |             |

# **Summer Peak Load Flow Appendices**

The following appendices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the Appendices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the Appendices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators.

It should be noted the project/generator MW contributions presented in the body of the report and appendices sections are full contributions, whereas the loading percentages reported in the body of the report, take into consideration the commercial probability of each project as well as the ramping impact of "Adder" contributions.

(CE - CE) The BRAIDWOOD; B-BRAIDWOOD; R 345 kV line (from bus 270670 to bus 270671 ckt 1) loads from 82.05% to 107.26% (AC power flow) of its load dump rating (1341 MVA) for the line fault with failed breaker contingency outage of 'ADD AD1-100 5'. This project contributes approximately 342.8 MW to the thermal violation.

CONTINGENCY 'ADD AD1-100 5'

OPEN BRANCH FROM BUS 934730 TO BUS 270710 CKT 1

/ AD1-100 - DAVIS

CREEK

OPEN BRANCH FROM BUS 934720 TO BUS 270926 CKT 1 WILTON

/ AD1-100 -

**END** 

| Bus Number | Bus Name     | Full Contribution |
|------------|--------------|-------------------|
| 932931     | AC2-117      | -6.8              |
| 934721     | AD1-100 C    | 60.5              |
| 934722     | AD1-100 E    | 282.31            |
| 935001     | AD1-133 C O1 | 14.9              |
| 935002     | AD1-133 E O1 | 9.94              |
| 935141     | AD1-148      | 3.36              |
| 274654     | BRAIDWOOD;1U | 104.01            |
| 274890     | CAYUG;1U E   | 29.24             |
| 274891     | CAYUG; 2U E  | 29.24             |
| 274863     | CAYUGA RI;1U | 1.34              |
| 274864     | CAYUGA RI;2U | 1.34              |
| LTF        | CBM-N        | 0.03              |
| LTF        | CBM-S1       | 3.46              |
| LTF        | CBM-S2       | 1.72              |
| LTF        | CBM-W2       | 34.61             |
| LTF        | CIN          | 3.5               |
| LTF        | CPLE         | 0.37              |
| LTF        | G-007A       | 0.48              |
| LTF        | IPL          | 2.01              |
| 983101     | J339         | 4.15              |
| 951151     | J474 C       | 2.2               |
| 951152     | J474 E       | 8.78              |
| 981031     | J734         | 0.7               |
| 938841     | J826         | 6.65              |
| LTF        | LGEE         | 0.38              |
| LTF        | MEC          | 4.69              |
| LTF        | NYISO        | 0.46              |
| LTF        | O-066A       | 0.22              |
| 290261     | S-027 C      | 1.                |
| 290265     | S-028 C      | 1.                |
| 274853     | TWINGROVE;U1 | 21.74             |

| 274854 | TWINGROVE;U2 | 21.74 |
|--------|--------------|-------|
| LTF    | VFT          | 1.28  |
| 276150 | W2-048 E     | 2.43  |
| 905081 | W4-005 C     | 0.96  |
| 905082 | W4-005 E     | 29.77 |
| 909052 | X2-022 E     | 17.37 |
| 916512 | Z1-107 E     | 1.18  |
| 917501 | Z2-087 C     | 4.32  |
| 917502 | Z2-087 E     | 28.92 |
| 924041 | AB2-047 C O1 | 5.4   |
| 924042 | AB2-047 E O1 | 36.15 |
| 924261 | AB2-070 C O1 | 2.56  |
| 924262 | AB2-070 E O1 | 17.12 |
| 925771 | AC1-053 C    | 2.51  |
| 925772 | AC1-053 E    | 16.8  |

(CE - CE) The AD1-100 TAP-BRAIDWOOD; B 345 kV line (from bus 934730 to bus 270670 ckt 1) loads from 86.59% to 128.83% (AC power flow) of its load dump rating (1341 MVA) for the line fault with failed breaker contingency outage of 'ADD AD1-100 5'. This project contributes approximately 591.19 MW to the thermal violation.

CONTINGENCY 'ADD AD1-100 5'

OPEN BRANCH FROM BUS 934730 TO BUS 270710 CKT 1

/ AD1-100 - DAVIS

**CREEK** 

OPEN BRANCH FROM BUS 934720 TO BUS 270926 CKT 1 WILTON

/ AD1-100 -

**END** 

| Bus    | Bus Name               | Full         |
|--------|------------------------|--------------|
| Number |                        | Contribution |
| LTF    | AA3-800 /* Q458 (HVDC) | < 0.01       |
|        | /*WITHDRAWN            |              |
| 932931 | AC2-117                | -3.15        |
| 934721 | AD1-100 C              | 104.33       |
| 934722 | AD1-100 E              | 486.86       |
| 935001 | AD1-133 C O1           | 26.17        |
| 935002 | AD1-133 E O1           | 17.45        |
| 935141 | AD1-148                | 5.82         |
| 274890 | CAYUG;1U E             | 50.52        |
| 274891 | CAYUG;2U E             | 50.52        |
| 274863 | CAYUGA RI;1U           | 2.32         |
| 274864 | CAYUGA RI;2U           | 2.32         |
| LTF    | CBM-N                  | 0.11         |
| LTF    | CBM-S1                 | 6.45         |
| LTF    | CBM-S2                 | 3.53         |
| LTF    | CBM-W2                 | 61.45        |
| LTF    | CIN                    | 6.52         |
| LTF    | CPLE                   | 0.78         |
| LTF    | G-007 $A$              | 1.44         |
| LTF    | IPL                    | 3.79         |
| 983101 | J339                   | 7.23         |
| 951151 | J474 C                 | 3.8          |
| 951152 | J474 E                 | 15.22        |
| 951661 | J644                   | 7.94         |
| 981031 | J734                   | 1.22         |
| 939811 | J750 C                 | 2.7          |
| 939812 | J750 E                 | 10.81        |
| 981361 | J756 C                 | 3.59         |
| 981362 | J756 E                 | 14.37        |

| 981581 | J757 C       | 4.34  |
|--------|--------------|-------|
| 981582 | J757 E       | 17.35 |
| 938791 | J815         | 21.48 |
| 938841 | J826         | 11.58 |
| 938941 | J845 C       | 2.25  |
| 938942 | J845 E       | 9.    |
| 938971 | J848 C       | 4.23  |
| 938972 | J848 E       | 16.9  |
| 939481 | J912         | 8.12  |
| 274650 | KINCAID ;1U  | 12.26 |
| 274651 | KINCAID ;2U  | 12.21 |
| LTF    | LGEE         | 0.78  |
| LTF    | MEC          | 7.01  |
| LTF    | NYISO        | 1.67  |
| LTF    | O-066A       | 0.67  |
| 290261 | S-027 C      | 1.73  |
| 290265 | S-028 C      | 1.73  |
| 274853 | TWINGROVE;U1 | 37.64 |
| 274854 | TWINGROVE;U2 | 37.64 |
| LTF    | VFT          | 3.88  |
| 276150 | W2-048 E     | 4.2   |
| 905081 | W4-005 C     | 1.66  |
| 905082 | W4-005 E     | 51.56 |
| 909052 | X2-022 E     | 30.06 |
| 917501 | Z2-087 C     | 7.48  |
| 917502 | Z2-087 E     | 50.08 |
| 924041 | AB2-047 C O1 | 9.35  |
| 924042 | AB2-047 E O1 | 62.6  |
| 924261 | AB2-070 C O1 | 4.43  |
| 924262 | AB2-070 E O1 | 29.63 |
| 925771 | AC1-053 C    | 4.34  |
| 925772 | AC1-053 E    | 29.08 |

(MISO NIPS - AEP) The 17STILLWELL-05DUMONT 345 kV line (from bus 255113 to bus 243219 ckt 1) loads from 100.31% to 108.11% (AC power flow) of its emergency rating (1409 MVA) for the line fault with failed breaker contingency outage of

'AEP\_P4\_#2978\_05DUMONT 765'. This project contributes approximately 128.4 MW to the thermal violation.

CONTINGENCY 'AEP\_P4\_#2978\_05DUMONT 765'

OPEN BRANCH FROM BUS 243206 TO BUS 243207 CKT 1 / 243206
05DUMONT 765 05GRNTWN

OPEN BRANCH FROM BUS 243206 TO BUS 270644 CKT 1 / 243206
05DUMONT 765 270644 WILTON; 765 1
END

| Bus    | Bus Name               | Full         |
|--------|------------------------|--------------|
| Number |                        | Contribution |
| LTF    | AA3-800 /* Q458 (HVDC) | < 0.01       |
|        | /*WITHDRAWN            |              |
| 932881 | AC2-115 1              | 2.77         |
| 932891 | AC2-115 2              | 2.77         |
| 932921 | AC2-116                | 0.97         |
| 932931 | AC2-117                | 5.88         |
| 933411 | AC2-154 C              | 3.06         |
| 933412 | AC2-154 E              | 4.99         |
| 933911 | AD1-013 C O1           | 2.14         |
| 933912 | AD1-013 E O1           | 3.42         |
| 933931 | AD1-016 C              | 1.08         |
| 933932 | AD1-016 E              | 1.76         |
| 934051 | AD1-031 C O1           | 3.32         |
| 934052 | AD1-031 E O1           | 5.42         |
| 934431 | AD1-067 C              | 0.15         |
| 934432 | AD1-067 E              | 0.64         |
| 934701 | AD1-098 C O1           | 8.01         |
| 934702 | AD1-098 E O1           | 5.85         |
| 934721 | AD1-100 C              | 22.66        |
| 934722 | AD1-100 E              | 105.74       |
| 934871 | AD1-116 C              | 1.1          |
| 934872 | AD1-116 E              | 1.8          |
| 934971 | AD1-129 C              | 1.05         |
| 934972 | AD1-129 E              | 0.7          |
| 935001 | AD1-133 C O1           | 24.39        |
| 935002 | AD1-133 E O1           | 16.26        |
| LTF    | BLUEG                  | 0.18         |
| 294401 | BSHIL;1U E             | 10.          |

| 201170 |              |        |
|--------|--------------|--------|
| 294410 | BSHIL;2U E   | 10.    |
| LTF    | CARR         | 0.91   |
| LTF    | CATAWBA      | 0.18   |
| 274890 | CAYUG; 1U E  | 16.    |
| 274891 | CAYUG;2U E   | 16.    |
| LTF    | CBM-S1       | 4.07   |
| LTF    | CBM-W1       | 73.49  |
| LTF    | CBM-W2       | 62.85  |
| LTF    | CIN          | 3.06   |
| LTF    | CLIFTY       | 8.11   |
| 274849 | CRESCENT ;1U | 5.64   |
| 274859 | EASYR;U1 E   | 12.83  |
| 274860 | EASYR;U2 E   | 12.83  |
| LTF    | G-007        | 2.38   |
| 290051 | GSG-6; E     | 12.17  |
| LTF    | HAMLET       | 0.4    |
| LTF    | IPL          | 1.31   |
| 940531 | J351         | 434.19 |
| 951131 | J643         | 25.8   |
| 938961 | J847         | 13.13  |
| 275149 | KEMPTON ;1E  | 22.55  |
| 990901 | L-005 E      | 14.7   |
| 290108 | LEEDK;1U E   | 28.26  |
| LTF    | MEC          | 45.44  |
| 274850 | MENDOTA H;RU | 6.28   |
| 293061 | N-015 E      | 17.75  |
| 293516 | O-009 E1     | 10.63  |
| 293517 | O-009 E2     | 5.4    |
| 293518 | O-009 E3     | 5.95   |
| 293715 | O-029 E      | 11.37  |
| 293716 | O-029 E      | 6.23   |
| 293717 | O-029 E      | 5.73   |
| 293771 | O-035 E      | 7.46   |
| LTF    | O-066        | 8.     |
| 293644 | O22 E1       | 12.11  |
| 293645 | O22 E2       | 23.51  |
| 290021 | O50 E        | 22.61  |
| 294392 | P-010 E      | 22.55  |
| 294763 | P-046 E      | 10.94  |
| 274888 | PILOT HIL;1E | 22.55  |
| 274830 | PWR VTREC;1U | 7.11   |
| 274831 | PWR VTREC;2U | 7.11   |
| LTF    | RENSSELAER   | 0.72   |
| 274789 | SE CHICAG;6U | 1.38   |
| 274790 | SE CHICAG;7U | 1.38   |

| 274791 | SE CHICAG;8U           | 1.38  |
|--------|------------------------|-------|
| 295111 | SUBLETTE E             | 3.17  |
| LTF    | TRIMBLE                | 0.06  |
| 274853 | TWINGROVE;U1           | 17.57 |
| 274854 | TWINGROVE;U2           | 17.57 |
| 299993 | <i>U3-031C</i>         | 6.31  |
| 274874 | WALNR;2U               | 2.78  |
| 294502 | WALNR, 2U E            | 11.14 |
| LTF    | WEC                    | 9.33  |
| 295109 | WESTBROOK E            | 6.51  |
| 910542 | X3-005 E               | 1.01  |
| 915011 | Y3-003 E<br>Y3-013 1   | 4.37  |
| 915021 | Y3-013 2               | 4.37  |
| 915021 | Y3-013 3               | 4.37  |
| 916502 | Z1-106 E1              | 1.47  |
| 916504 | Z1-106 E1<br>Z1-106 E2 | 1.47  |
| 916512 | Z1-100 E2<br>Z1-107 E  | 3.06  |
| 916522 | Z1-10/ E<br>Z1-108 E   | 2.9   |
| 917501 | Z1-108 E<br>Z2-087 C   | 3.22  |
| 917502 | Z2-087 E               | 21.55 |
| 917302 | AA1-018 C              | 2.83  |
| 918052 | AA1-018 E              | 18.96 |
| 919032 | AA1-016 E<br>AA1-146   | 20.53 |
| 919221 | AA2-030                | 20.53 |
| 920272 | AA2-030<br>AA2-123 E   | 2.84  |
| 930481 | AB1-089                | 76.63 |
| 930761 | AB1-089<br>AB1-122 1   | 83.48 |
| 930771 | AB1-122 1<br>AB1-122 2 | 86.03 |
| 924041 | AB2-047 C O1           | 4.03  |
| 924042 | AB2-047 E OI           | 26.94 |
| 924471 | AB2-096                | 49.35 |
| 925301 | AB2-090<br>AB2-191 C   | 1.17  |
| 925302 | AB2-191 E              | 1.61  |
| 925581 | AC1-033 C              | 1.64  |
| 925582 | AC1-033 E              | 10.96 |
| 926311 | AC1-109 1              | 2.22  |
| 926321 | AC1-109 2              | 2.22  |
| 926331 | ACI-110 1              | 2.21  |
| 926341 | ACI-110 1<br>ACI-110 2 | 2.21  |
| 926351 | ACI-111 1              | 0.89  |
| 926361 | ACI-111 2              | 0.89  |
| 926371 | ACI-111 3              | 0.89  |
| 926381 | ACI-111 4              | 0.89  |
| 926391 | ACI-111 5              | 0.89  |
| 926401 | ACI-111 6              | 0.89  |
| >20,01 | 1101 111 0             | 0.07  |

| 927511 | AC1-113 1  | 1.39  |
|--------|------------|-------|
| 927522 | AC1-113 2  | 1.39  |
| 926431 | AC1-114    | 2.77  |
| 927451 | AC1-142A 1 | 4.89  |
| 927461 | AC1-142A 2 | 4.89  |
| 926821 | AC1-168 C  | 1.35  |
| 926822 | AC1-168 E  | 9.06  |
| 926841 | AC1-171 C  | 1.17  |
| 926842 | AC1-171 E  | 7.83  |
| 927531 | AC1-185 1  | 0.8   |
| 927541 | AC1-185 2  | 0.8   |
| 927551 | AC1-185 3  | 0.8   |
| 927561 | AC1-185 4  | 0.8   |
| 927571 | AC1-185 5  | 0.8   |
| 927581 | AC1-185 6  | 0.8   |
| 927591 | AC1-185 7  | 0.8   |
| 927601 | AC1-185 8  | 0.8   |
| 927091 | AC1-204 1  | 84.29 |
| 927101 | AC1-204 2  | 84.26 |
| 927201 | AC1-214 C  | 2.4   |
| 927202 | AC1-214 E  | 6.37  |

(MISO AMIL - AEP) The 7CASEY-05SULLIVAN 345 kV line (from bus 346809 to bus 247712 ckt 1) loads from 122.81% to 125.68% (AC power flow) of its emergency rating (1466 MVA) for the line fault with failed breaker contingency outage of 'AEP\_P4\_#3128\_05EUGENE 345'. This project contributes approximately 48.55 MW to the thermal violation.

CONTINGENCY 'AEP\_P4\_#3128\_05EUGENE 345'

OPEN BRANCH FROM BUS 243221 TO BUS 249504 CKT 1 / 243221
05EUGENE 345 249504 08CAYSUB 345 1

OPEN BRANCH FROM BUS 243221 TO BUS 348885 CKT 1 / 243221
05EUGENE 345 348885 7BUNSONVILLE 345 1

**END** 


| Bus    | Bus Name               | Full         |
|--------|------------------------|--------------|
| Number |                        | Contribution |
| LTF    | AA3-800 /* Q458 (HVDC) | < 0.01       |
|        | /*WITHDRAWN            |              |
| 932881 | AC2-115 1              | 1.31         |
| 932891 | AC2-115 2              | 1.31         |
| 932921 | AC2-116                | 0.46         |
| 933911 | AD1-013 C O1           | 1.01         |
| 933912 | AD1-013 E O1           | 1.61         |
| 933931 | AD1-016 C              | 0.47         |
| 933932 | AD1-016 E              | 0.77         |
| 934051 | AD1-031 C O1           | 2.37         |
| 934052 | AD1-031 E O1           | 3.87         |
| 934431 | AD1-067 C              | 0.07         |
| 934432 | AD1-067 E              | 0.3          |
| 934701 | AD1-098 C O1           | 3.83         |
| 934702 | AD1-098 E O1           | 2.8          |
| 934721 | AD1-100 C              | 8.57         |
| 934722 | AD1-100 E              | 39.98        |
| 934871 | AD1-116 C              | 0.47         |
| 934872 | AD1-116 E              | 0.77         |
| 934971 | AD1-129 C              | 0.48         |
| 934972 | AD1-129 E              | 0.32         |
| 935001 | AD1-133 C O1           | 14.32        |
| 935002 | AD1-133 E O1           | 9.54         |
| 935141 | AD1-148                | 5.54         |
| LTF    | BLUEG                  | 5.64         |
| 294401 | BSHIL;1U E             | 7.14         |
| 294410 | BSHIL;2U E             | 7.14         |
| LTF    | CANNELTON              | 1.2          |
| LTF    | CARR                   | 0.33         |

| 274890 | CAYUG;1U E    | 10.24  |
|--------|---------------|--------|
| 274891 | CAYUG; 2U E   | 10.24  |
| LTF    | CBM-S1        | 9.26   |
| LTF    | CBM-S2        | 2.75   |
| LTF    | CBM-W1        | 56.36  |
| LTF    | CBM-W2        | 139.49 |
| LTF    | CLIFTY        | 18.99  |
| LTF    | CPLE          | 0.38   |
| 274849 | CRESCENT ; 1U | 3.96   |
| 274859 | EASYR;U1 E    | 6.86   |
| 274860 | EASYR;U2 E    | 6.86   |
| LTF    | ELMERSMITH    | 3.22   |
| LTF    | G-007         | 0.84   |
| 960018 | G997 E        | -2.87  |
| LTF    | GIBSON        | 1.43   |
| 290051 | GSG-6; E      | 5.77   |
| 960026 | J196 E        | 5.38   |
| 940291 | J291          | 3.23   |
| 983101 | J339          | 6.18   |
| 940541 | J468 C        | 7.14   |
| 940542 | J468 E        | 28.58  |
| 951151 | J474 C        | 2.63   |
| 951152 | J474 E        | 10.51  |
| 951641 | J641 C        | 8.26   |
| 951642 | J641 E        | 2.16   |
| 951661 | J644          | 9.64   |
| 981031 | J734          | 1.05   |
| 939811 | J750 C        | 2.74   |
| 939812 | J750 E        | 10.94  |
| 981361 | J756 C        | 3.2    |
| 981362 | J756 E        | 12.8   |
| 981581 | J757 C        | 5.24   |
| 981582 | J757 E        | 20.97  |
| 938391 | J808          | 8.77   |
| 938411 | J811          | 17.9   |
| 939761 | J813          | 39.44  |
| 938791 | J815          | 32.38  |
| 938811 | J817          | 10.27  |
| 938841 | J826          | 10.79  |
| 938941 | J845 C        | 2.26   |
| 938942 | J845 E        | 9.05   |
| 938971 | J848 C        | 6.81   |
| 938972 | J848 E        | 27.23  |
| 938451 | J853          | 10.05  |
| 939041 | J859          | 9.85   |

| 020491           | 10.1.2                                | 1.4.25        |
|------------------|---------------------------------------|---------------|
| 939481           | J912                                  | 14.35         |
| 939741           | J949<br>VINCAID . III                 | 39.2<br>17.74 |
| 274650           | KINCAID ;1U KINCAID ;2U               |               |
| 274651<br>990901 | · · · · · · · · · · · · · · · · · · · | 17.67         |
|                  | L-005 E                               | 11.23         |
| 290108           | LEEDK; 1U E                           | 12.62         |
| LTF              | MEC                                   | 44.95         |
| 274850           | MENDOTA H;RU                          | 2.98          |
| 293061           | N-015 E                               | 6.84          |
| 293516           | O-009 E1                              | 6.45          |
| 293517           | O-009 E2                              | 3.27          |
| 293518           | O-009 E3                              | 3.61          |
| 293715           | O-029 E                               | 6.89          |
| 293716           | O-029 E                               | 3.78          |
| 293717           | O-029 E                               | 3.47          |
| 293771           | O-035 E                               | 5.23          |
| LTF              | O-066                                 | 2.83          |
| 293644           | O22 E1                                | 5.            |
| 293645           | O22 E2                                | 9.7           |
| 290021           | O50 E                                 | 10.94         |
| 294392           | P-010 E                               | 8.69          |
| 294763           | P-046 E                               | 5.44          |
| 274830           | PWR VTREC;1U                          | 3.19          |
| 274831           | PWR VTREC;2U                          | 3.19          |
| LTF              | RENSSELAER                            | 0.26          |
| 290261           | S-027 C                               | 0.9           |
| 290265           | S-028 C                               | 0.9           |
| 295111           | $SUBLETTE\ E$                         | 1.5           |
| LTF              | TRIMBLE                               | 1.09          |
| 274853           | TWINGROVE;U1                          | 19.48         |
| 274854           | TWINGROVE;U2                          | 19.48         |
| 276150           | W2-048 E                              | 4.            |
| 905081           | W4-005 C                              | 1.17          |
| 905082           | W4-005 E                              | 36.49         |
| 274874           | WALNR; 2U                             | 1.53          |
| 294502           | WALNR; 2U E                           | 6.11          |
| LTF              | WEC                                   | 4.2           |
| 295109           | WESTBROOK E                           | 3.09          |
| 909052           | X2-022 E                              | 28.6          |
| 915011           | Y3-013 1                              | 1.75          |
| 915021           | Y3-013 2                              | 1.75          |
| 915031           | Y3-013 3                              | 1.75          |
| 916502           | Z1-106 E1                             | 0.57          |
| 916504           |                                       |               |
|                  | Z1-106 E2                             | 0.57          |

| 917501 | Z2-087 C     | 2.61  |
|--------|--------------|-------|
| 917502 | Z2-087 E     | 17.48 |
| 918051 | AA1-018 C    | 1.21  |
| 918052 | AA1-018 E    | 8.07  |
| 919221 | AA1-146      | 11.73 |
| 919581 | AA2-030      | 11.73 |
| 920272 | AA2-123 E    | 1.24  |
| 930481 | AB1-089      | 35.77 |
| 930761 | AB1-122 1    | 35.68 |
| 930771 | AB1-122 2    | 32.67 |
| 924041 | AB2-047 C O1 | 3.27  |
| 924042 | AB2-047 E O1 | 21.85 |
| 924261 | AB2-070 C O1 | 3.86  |
| 924262 | AB2-070 E O1 | 25.8  |
| 924471 | AB2-096      | 22.14 |
| 925301 | AB2-191 C    | 0.55  |
| 925302 | AB2-191 E    | 0.76  |
| 925581 | AC1-033 C    | 1.17  |
| 925582 | AC1-033 E    | 7.82  |
| 925771 | AC1-053 C    | 3.89  |
| 925772 | AC1-053 E    | 26.04 |
| 926311 | AC1-109 1    | 0.84  |
| 926321 | AC1-109 2    | 0.84  |
| 926331 | AC1-110 1    | 0.85  |
| 926341 | AC1-110 2    | 0.85  |
| 926351 | AC1-111 1    | 0.34  |
| 926361 | AC1-111 2    | 0.34  |
| 926371 | AC1-111 3    | 0.34  |
| 926381 | AC1-111 4    | 0.34  |
| 926391 | AC1-111 5    | 0.34  |
| 926401 | AC1-111 6    | 0.34  |
| 927511 | AC1-113 1    | 0.66  |
| 927522 | AC1-113 2    | 0.66  |
| 926431 | AC1-114      | 1.31  |
| 926821 | AC1-168 C    | 0.84  |
| 926822 | AC1-168 E    | 5.66  |
| 926841 | AC1-171 C    | 1.13  |
| 926842 | AC1-171 E    | 7.61  |
| 927531 | AC1-185 1    | 0.43  |
| 927541 | AC1-185 2    | 0.43  |
| 927551 | AC1-185 3    | 0.43  |
| 927561 | AC1-185 4    | 0.43  |
| 927571 | AC1-185 5    | 0.43  |
| 927581 | AC1-185 6    | 0.43  |
| 927591 | AC1-185 7    | 0.43  |

| 927601 | AC1-185 8 | 0.43 |
|--------|-----------|------|
| 927201 | AC1-214 C | 1.68 |
| 927202 | AC1-214 E | 4.46 |



## **Network Impacts**

The Queue Project AD1-100 was evaluated as an 850.0 MW injection tapping both the Wilton Center (Blue) to Loretto 345kV line and the Braidwood (Blue) to Davis Creek (Blue) 345kV line in the ComEd area. Project AD1-100 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AD1-100 was studied with a commercial probability of 1.0. Potential network impacts were as follows:

# **Generation Deliverability**

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

| I | Overload |      | Contingency | Affected |                      | В      | us     |         | Power | Load    | ling % | Rat  | ting | MW           |
|---|----------|------|-------------|----------|----------------------|--------|--------|---------|-------|---------|--------|------|------|--------------|
|   | Number   | Type | Name        | Area     | Facility Description | From   | То     | Circuit | Flow  | Initial | Final  | Type | MVA  | Contribution |
|   |          |      | COMED_P1-   |          | AD1-100 TAP-         |        |        |         |       |         |        |      |      |              |
|   |          |      | 2_765-      | AREA14   | WILTON; B 345 kV     |        |        |         |       |         |        |      |      |              |
|   | 1        | N-1  | L11216S     | - CE     | line                 | 934720 | 270926 | 1       | DC    | 93.76   | 107.59 | ER   | 1528 | 211.32       |

# **Multiple Facility Contingency**

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

| Overload |      | Contingency   | Affected |                      | В      | us     |         | Power | Load    | ling % | Rat  | ting | MW           | Flowgate        |
|----------|------|---------------|----------|----------------------|--------|--------|---------|-------|---------|--------|------|------|--------------|-----------------|
| Number   | Type | Name          | Area     | Facility Description | From   | То     | Circuit | Flow  | Initial | Final  | Type | MVA  | Contribution | <b>Appendix</b> |
|          |      | COMED_P4_112- |          | WILTON ; 765/345     |        |        |         |       |         |        |      |      |              |                 |
| 2        | LFFB | 65-BT2-3      | CE - CE  | kV transformer       | 275233 | 270644 | 1       | DC    | 93.46   | 103.05 |      | 1379 | 132.36       | 1               |
|          |      | COMED_P7_345- |          |                      |        |        |         |       |         |        |      |      |              |                 |
|          |      | L2001B-       |          | AD1-100 TAP-         |        |        |         |       |         |        |      |      |              |                 |
|          |      | S_+_345-      | AREA14   | WILTON ; B 345 kV    |        |        |         |       |         |        |      |      |              |                 |
| 3        | DCTL | L2003R-S      | - CE     | line                 | 934720 | 270926 | 1       | AC    | 93.25   | 108.09 | ER   | 1528 | 231.05       | 2               |

## **Contribution to Previously Identified Overloads**

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

| Overload | Overload Contingency |               | Affected |                      | В      | us     |         | Power | Load    | ing %  | Rat  | ting | MW           | Flowgate        |
|----------|----------------------|---------------|----------|----------------------|--------|--------|---------|-------|---------|--------|------|------|--------------|-----------------|
| Number   | Type                 | Name          | Area     | Facility Description | From   | То     | Circuit | Flow  | Initial | Final  | Type | MVA  | Contribution | <b>Appendix</b> |
|          |                      |               | MISO     | 19MON12-             |        |        |         |       |         |        |      |      |              |                 |
|          |                      | ATSI-P7-1-TE- | ITCT -   | 02LALLENDORF 345     |        |        |         |       |         |        |      |      |              |                 |
| 4        | DCTL                 | 138-025T_1    | FE       | kV line              | 264612 | 241901 | 1       | AC    | 110.49  | 112.83 | ER   | 1494 | 41.11        | 3               |
|          |                      |               | MISO     | 19MON12-             |        |        |         |       |         |        |      |      |              |                 |
|          |                      | ATSI-P1-2-TE- | ITCT -   | 02LALLENDORF 345     |        |        |         |       |         |        |      |      |              |                 |
| 5        | N-1                  | 345-605T      | FE       | kV line              | 264612 | 241901 | 1       | AC    | 101.65  | 108.15 | ER   | 1494 | 37.96        |                 |
|          |                      | COMED_P4_112- | CE -     | WILTON; B-WILTON     |        |        |         |       |         |        |      |      |              |                 |
| 6        | LFFB                 | 65-BT5-6      | CE       | ;3M 345 kV line      | 270926 | 275232 | 1       | DC    | 105.67  | 112.25 |      | 1379 | 129.79       | 4               |
|          |                      | COMED_P4_112- | CE -     | WILTON; R-WILTON     |        |        |         |       |         |        |      |      |              |                 |
| 7        | LFFB                 | 65-BT2-3      | CE       | ;4M 345 kV line      | 270927 | 275233 | 1       | DC    | 108.0   | 114.71 |      | 1379 | 132.36       | 5               |

## **Potential Congestion due to Local Energy Deliverability**

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

None.

# **System Reinforcements**

| Facility                                                                                    | Upgrade I                                                                | Description                                                                                                                                                                       |                            |              | Cost         | Cost<br>Allocation | Upgrade<br>Number |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|--------------------|-------------------|
| AD1-100 TAP-<br>WILTON; B 345<br>kV Ckt. 1                                                  | Com Ed SS                                                                | ngs are sufficient. No<br>TE: 1846 MVA<br>DR: 2554 MVA                                                                                                                            | \$0                        | \$0          |              |                    |                   |
| 19MON12-<br>02LALLENDORF<br>345 kV Ckt. 1                                                   | MISO Upg 1. MISO 2. MISO 2000 M  Note: MISO and the state Facilities St  | E rating is 1824 MV A  rades: end SE Rating is 134: MTEP Project #1381                                                                                                            | ratings.  AD1-100  ing the | \$0          | \$0          |                    |                   |
| WILTON; B-<br>WILTON; 3M<br>345 kV Ckt. 1<br>&<br>WILTON; R-<br>WILTON; 4M<br>345 kV Ckt. 1 | 765kV L112<br>with this lin<br>Cost: \$50,0<br>Time Estim<br>Ratings: Th | N5145<br>g: Build out the Wilton<br>216 (currently on Bus<br>e relocation, installati<br>00,000 (ComEd incre<br>nate: 30 Months<br>its will eliminate the s<br>'112-65- BT5-6'. N | \$50,000,000               | \$50,000,000 | N5145        |                    |                   |
|                                                                                             | <b>Total Cost</b>                                                        |                                                                                                                                                                                   |                            |              | \$50,000,000 | \$50,000,000       |                   |

# **Light Load Contingencies**

| Contingency Name        | Contingency Definition                                                              |
|-------------------------|-------------------------------------------------------------------------------------|
| ATSI-P1-2-TE-345-605T   | CONTINGENCY 'ATSI-P1-2-TE-345-605T' /* LINE 02ALLEN-18LENAWEE 345 CK 1              |
|                         | DISCONNECT BRANCH FROM BUS 238530 TO BUS 256583 CKT 1 /* 02ALLEN 345 18LENAWEE 345  |
|                         | END                                                                                 |
| ATSI-P7-1-TE-138-025T_1 | CONTINGENCY 'ATSI-P7-1-TE-138-025T_1' /* ALLEN-<br>MAJ-MONROE & LEMO-MAJESTIC 345KV |
|                         | DISCONNECT BRANCH FROM BUS 264594 TO BUS 256583 CKT 1 /* 19LULU 345 18LENAWEE 345   |
|                         | DISCONNECT BRANCH FROM BUS 264594 TO BUS 264839 CKT 1 /* 19LULU 345 19MILAN 345     |
|                         | DISCONNECT BRANCH FROM BUS 264594 TO BUS 264613 CKT 1 /* 19LULU 345 19MON34 345     |
|                         | DISCONNECT BRANCH FROM BUS 238889 TO BUS 264599 CKT 1 /* 02LEMOYN 345 19MAJTC 345   |
|                         | END                                                                                 |
| COMED_P1-2_765-         | CONTINGENCY 'COMED_P1-2_765-L11216S'                                                |
| L11216S                 | TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765             |
|                         | END                                                                                 |
| COMED_P4_112-65-BT2-    | CONTINGENCY 'COMED_P4_112-65-BT2-3'                                                 |
| 3                       | TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765             |
|                         | TRIP BRANCH FROM BUS 275232 TO BUS 270644 CKT 1 / WILTO;3M 345 WILTO; 765           |
|                         | TRIP BRANCH FROM BUS 275232 TO BUS 270926 CKT 1 / WILTO;3M 345 WILTO; B 345         |
|                         | TRIP BRANCH FROM BUS 275232 TO BUS 275332 CKT 1 / WILTO;3M 345 WILTO;3C 33          |
|                         | END                                                                                 |
| COMED_P4_112-65-BT5-    | CONTINGENCY 'COMED_P4_112-65-BT5-6'                                                 |
| 6                       | TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765             |
| L                       |                                                                                     |

|                                          | TRIP BRANCH FROM BUS 275233 TO BUS 270644 CKT 1<br>WILTO;4M 345 WILTO; 765 | 1   |
|------------------------------------------|----------------------------------------------------------------------------|-----|
|                                          | TRIP BRANCH FROM BUS 275233 TO BUS 270927 CKT 1 WILTO;4M 345 WILTO; R 345  | 1   |
|                                          | TRIP BRANCH FROM BUS 275233 TO BUS 275333 CKT 1 WILTO;4M 345 WILTO;4C 33   | 1   |
|                                          | END                                                                        |     |
| COMED_P7_345-L2001B-<br>S_+_345-L2003R-S |                                                                            |     |
|                                          | TRIP BRANCH FROM BUS 270670 TO BUS 270728 CKT 1 BRAID; B 345 E FRA; B 345  | 1   |
|                                          | TRIP BRANCH FROM BUS 270728 TO BUS 270766 CKT 1 FRA; B 345 GOODI;3B 345    | / E |
|                                          | TRIP BRANCH FROM BUS 270728 TO BUS 274750 CKT 1 FRA; B 345 CRETE;BP 345    | / E |
|                                          | TRIP BRANCH FROM BUS 270671 TO BUS 270729 CKT 1 BRAID; R 345 E FRA; R 345  | 1   |
|                                          | END                                                                        |     |

## **Light Load Flow Gate Details**

The following indices contain additional information about each flowgate presented in the body of the report. For each appendix, a description of the flowgate and its contingency was included for convenience. However, the intent of the appendix section is to provide more information on which projects/generators have contributions to the flowgate in question. Although this information is not used "as is" for cost allocation purposes, it can be used to gage other generators impact. It should be noted the generator contributions presented in the appendices sections are full contributions, whereas in the body of the report, those contributions take into consideration the commercial probability of each project.

(CE - CE) The WILTON; 765/345 kV transformer (from bus 275233 to bus 270644 ckt 1) loads from 93.46% to 103.05% (**DC power flow**) of its load dump rating (1379 MVA) for the line fault with failed breaker contingency outage of 'COMED\_P4\_112-65-BT2-3\_\_'. This project contributes approximately 132.36 MW to the thermal violation.

CONTINGENCY 'COMED\_P4\_112-65-BT2-3\_\_'

TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765

TRIP BRANCH FROM BUS 275232 TO BUS 270644 CKT 1 / WILTO;3M 345 WILTO; 765

TRIP BRANCH FROM BUS 275232 TO BUS 270926 CKT 1 / WILTO;3M 345 WILTO; B 345

TRIP BRANCH FROM BUS 275232 TO BUS 275332 CKT 1 / WILTO;3M 345 WILTO;3C 33

END

| Bus Number | Bus Name     | Full Contribution |
|------------|--------------|-------------------|
| 934431     | AD1-067 C    | 0.13              |
| 934432     | AD1-067 E    | 0.53              |
| 934721     | AD1-100 C    | 23.36             |
| 934722     | AD1-100 E    | 109.              |
| 274857     | BIG SKY ;U1  | 1.32              |
| 274858     | BIG SKY ;U2  | 1.32              |
| 274877     | BISHOP HL;1U | 1.03              |
| 274878     | BISHOP HL;2U | 1.03              |
| 294401     | BSHIL;1UE    | 4.13              |
| 294410     | BSHIL;2U E   | 4.13              |
| 274848     | CAMPGROVE;RU | 1.52              |
| 274890     | CAYUG;1U E   | 7.99              |
| 274891     | CAYUG;2U E   | 7.99              |
| 274863     | CAYUGA RI;1U | 2.                |
| 274864     | CAYUGA RI;2U | 2.                |
| 274849     | CRESCENT ;1U | 2.84              |
| 274859     | EASYR;U1 E   | 5.26              |
| 274860     | EASYR;U2 E   | 5.26              |
| 274856     | ECOGROVE ;U1 | 1.12              |
| 274871     | GR RIDGE ;2U | 2.43              |
| 274847     | GR RIDGE ;BU | 1.91              |
| 274855     | GSG-6 ;RU    | 1.25              |
| 290051     | GSG-6; E     | 5.01              |
| 275149     | KEMPTON ;1E  | 9.23              |
| 990901     | L-005 E      | 6.07              |
| 274872     | LEE DEKAL;1U | 2.79              |
| 290108     | LEEDK;1U E   | 11.65             |
| 274850     | MENDOTA H;RU | 2.88              |
| 274879     | MINONK ;1U   | 2.32              |
| 293061     | N-015 E      | 7.65              |
| 293513     | O-009 C1     | 1.09              |

| 293514 | O-009 C2            | 0.55   |
|--------|---------------------|--------|
| 293515 | O-009 C3            | 0.61   |
| 293516 | O-009 E1            | 4.38   |
| 293517 | O-009 E2            | 2.22   |
| 293518 | O-009 E3            | 2.45   |
| 293712 | O-029 C             | 1.17   |
| 293713 | O-029 C             | 0.64   |
| 293714 | O-029 C             | 0.59   |
| 293715 | O-029 E             | 4.68   |
| 293716 | O-029 E             | 2.57   |
| 293717 | O-029 E             | 2.36   |
| 293771 | O-035 E             | 3.09   |
| 293644 | O22 E1              | 4.93   |
| 293645 | O22 E2              | 9.57   |
| 290021 | O50 E               | 9.29   |
| 294392 | P-010 E             | 9.72   |
| 294763 | P-046 E             | 4.48   |
| 274888 | PILOT HIL;1E        | 9.23   |
| 274887 | PILOT HIL;1U        | 2.31   |
| 274881 | PLEAS RDG;2U        | 2.31   |
| 274851 | PROVIDENC;RU        | 0.77   |
| 274662 | <i>QUAD CITI;1U</i> | 117.61 |
| 274663 | <i>QUAD CITI;2U</i> | 117.68 |
| 290261 | S-027 C             | 1.99   |
| 290265 | S-028 C             | 1.99   |
| 295110 | SUBLETTE C          | 0.18   |
| 295111 | SUBLETTE E          | 1.3    |
| 274861 | TOP CROP ;1U        | 1.23   |
| 274862 | TOP CROP ;2U        | 2.39   |
| 274853 | TWINGROVE;U1        | 7.96   |
| 274854 | TWINGROVE;U2        | 7.96   |
| 905082 | W4-005 E            | 26.98  |
| 274874 | WALNR;2U            | 2.29   |
| 294502 | WALNR;2U E          | 9.15   |
| 295108 | WESTBROOK C         | 0.41   |
| 295109 | WESTBROOK E         | 2.68   |
| 916211 | Z1-072              | 0.52   |
| 916221 | Z1-073              | 0.34   |
| 917501 | Z2-087 C            | 1.51   |
| 917502 | Z2-087 E            | 20.21  |
| 918051 | AA1-018 C           | 2.37   |
| 918052 | AA1-018 E           | 15.83  |
| 920272 | AA2-123 E           | 2.92   |
| 924041 | AB2-047 C O1        | 3.72   |
| 924042 | AB2-047 E O1        | 24.93  |

| 924261 | AB2-070 C O1 | 2.11  |
|--------|--------------|-------|
| 924262 | AB2-070 E O1 | 14.13 |
| 925301 | AB2-191 C    | 1.2   |
| 925302 | AB2-191 E    | 1.66  |
| 925581 | AC1-033 C    | 1.35  |
| 925582 | AC1-033 E    | 9.06  |
| 925771 | AC1-053 C    | 2.09  |
| 925772 | AC1-053 E    | 13.99 |
| 926821 | AC1-168 C O1 | 1.12  |
| 926822 | AC1-168 E O1 | 7.49  |
| 926841 | AC1-171 C O1 | 0.96  |
| 926842 | AC1-171 E O1 | 6.44  |
| 927202 | AC1-214 E O1 | 6.31  |

(AREA14 - CE) The AD1-100 TAP-WILTON; B 345 kV line (from bus 934720 to bus 270926 ckt 1) loads from 93.25% to 108.09% (AC power flow) of its emergency rating (1528 MVA) for the tower line contingency outage of 'COMED\_P7\_345-L2001\_B-S\_+\_345-L2003\_R-S'. This project contributes approximately 231.05 MW to the thermal violation.

CONTINGENCY 'COMED\_P7\_345-L2001\_B-S\_+\_345-L2003\_R-S'

TRIP BRANCH FROM BUS 270670 TO BUS 270728 CKT 1

TRIP BRANCH FROM BUS 270728 TO BUS 270766 CKT 1

TRIP BRANCH FROM BUS 270728 TO BUS 274750 CKT 1

TRIP BRANCH FROM BUS 270671 TO BUS 270729 CKT 1

END

/ BRAID; B 345 E FRA; B 345 GOODI; 3B 345

/ E FRA; B 345 CRETE; BP 345

/ BRAID; R 345 E FRA; R 345

| Bus Number | Bus Name     | Full Contribution |
|------------|--------------|-------------------|
| 934721     | AD1-100 C    | 40.77             |
| 934722     | AD1-100 E    | 190.28            |
| 935141     | AD1-148      | 3.74              |
| 274890     | CAYUG;1U E   | 12.07             |
| 274891     | CAYUG;2U E   | 12.07             |
| 274863     | CAYUGA RI;1U | 3.02              |
| 274864     | CAYUGA RI;2U | 3.02              |
| 274871     | GR RIDGE ;2U | 1.81              |
| 274847     | GR RIDGE ;BU | 1.42              |
| 938541     | J474         | 11.61             |
| 939891     | J750         | 1.7               |
| 939892     | J750 E       | 6.78              |
| 939031     | J756         | 2.3               |
| 939032     | J756 E       | 9.2               |
| 939501     | J826         | 6.7               |
| 939551     | J845         | 1.25              |
| 939552     | J845 E       | 4.98              |
| 275149     | KEMPTON ;1E  | 7.32              |
| 293061     | N-015 E      | 5.69              |
| 294392     | P-010 E      | 7.23              |
| 274888     | PILOT HIL;1E | 7.32              |
| 274887     | PILOT HIL;1U | 1.83              |
| 274881     | PLEAS RDG;2U | 1.83              |
| 290261     | S-027 C      | 2.25              |
| 290265     | S-028 C      | 2.25              |
| 274853     | TWINGROVE;U1 | 9.                |
| 274854     | TWINGROVE;U2 | 9.                |
| 276150     | W2-048 E     | 1.03              |
| 905082     | W4-005 E     | 28.78             |
| 909052     | X2-022 E     | 14.32             |
| 917501     | Z2-087 C     | 1.8               |

| 917502 | Z2-087 E     | 24.06 |
|--------|--------------|-------|
| 924041 | AB2-047 C O1 | 4.41  |
| 924042 | AB2-047 E O1 | 29.53 |
| 924261 | AB2-070 C O1 | 2.11  |
| 924262 | AB2-070 E O1 | 14.14 |
| 925771 | AC1-053 C    | 2.07  |
| 925772 | AC1-053 E    | 13.87 |
| 926821 | AC1-168 C O1 | 0.48  |
| 926822 | AC1-168 E O1 | 3.25  |

(MISO ITCT - FE) The 19MON12-02LALLENDORF 345 kV line (from bus 264612 to bus 241901 ckt 1) loads from 110.49% to 112.83% (AC power flow) of its emergency rating (1494 MVA) for the tower line contingency outage of 'ATSI-P7-1-TE-138-025T\_1'. This project contributes approximately 41.11 MW to the thermal violation.

CONTINGENCY 'ATSI-P7-1-TE-138-025T\_1' /\* ALLEN-MAJ-MONROE & LEMO-MAJESTIC 345KV
DISCONNECT BRANCH FROM BUS 264594 TO BUS 256583 CKT 1 /\* 19LULU 345
18LENAWEE 345
DISCONNECT BRANCH FROM BUS 264594 TO BUS 264839 CKT 1 /\* 19LULU 345 19MILAN 345
DISCONNECT BRANCH FROM BUS 264594 TO BUS 264613 CKT 1 /\* 19LULU 345 19MON34

345

DISCONNECT BRANCH FROM BUS 238889 TO BUS 264599 CKT 1 /\* 02LEMOYN 345

19MAJTC 345 END

| Bus Number | Bus Name  | Full Contribution |
|------------|-----------|-------------------|
| 933281     | AC2-140 C | 2.73              |
| 933282     | AC2-140 E | 0.14              |
| 934431     | AD1-067 C | 0.05              |
| 934432     | AD1-067 E | 0.21              |
| 934721     | AD1-100 C | 7.25              |
| 934722     | AD1-100 E | 33.85             |
| 935141     | AD1-148   | 1.97              |
| 938161     | G934      | 22.15             |
| 937891     | J201      | 4.35              |
| 937961     | J246      | 1.41              |
| 938071     | J301      | 25.63             |
| 938001     | J325      | 1.02              |
| 938011     | J327      | 38.09             |
| 938021     | J340      | 25.39             |
| 938051     | J354      | 13.19             |
| 938261     | J466      | 7.36              |
| 938451     | J533      | 32.41             |
| 938781     | J589      | 26.37             |
| 939331     | J701      | 2.31              |
| 939332     | J701 E    | 9.26              |
| 938991     | J717      | 7.79              |
| 938992     | J717 E    | 31.15             |
| 939101     | J728      | 7.79              |
| 939102     | J728      | 31.15             |
| 938851     | J752      | 4.8               |
| 938852     | J752 E    | 19.18             |

| 939241 | J794         | 0.46  |
|--------|--------------|-------|
| 939242 | J794 E       | 1.86  |
| 274662 | QUAD CITI;1U | 50.67 |
| 274663 | QUAD CITI;10 | 50.69 |
| 276150 | W2-048 E     | 0.54  |
|        |              |       |
| 905082 | W4-005 E     | 12.63 |
| 274874 | WALNR;2U     | 0.95  |
| 294502 | WALNR; 2U E  | 3.78  |
| 909052 | X2-022 E     | 7.55  |
| 917502 | Z2-087 E     | 7.76  |
| 918051 | AA1-018 C    | 0.93  |
| 918052 | AA1-018 E    | 6.21  |
| 920272 | AA2-123 E    | 1.16  |
| 924041 | AB2-047 C O1 | 1.44  |
| 924042 | AB2-047 E O1 | 9.66  |
| 924261 | AB2-070 C O1 | 1.06  |
| 924262 | AB2-070 E O1 | 7.07  |
| 925301 | AB2-191 C    | 0.48  |
| 925302 | AB2-191 E    | 0.67  |
| 925581 | AC1-033 C    | 0.58  |
| 925582 | AC1-033 E    | 3.87  |
| 925771 | AC1-053 C    | 1.05  |
| 925772 | AC1-053 E    | 7.05  |
| 926821 | AC1-168 C O1 | 0.46  |
| 926822 | AC1-168 E O1 | 3.1   |
| 926841 | AC1-171 C O1 | 0.44  |
| 926842 | AC1-171 E O1 | 2.93  |
| 927202 | AC1-214 E O1 | 2.68  |

(CE - CE) The WILTON; B-WILTON; 3M 345 kV line (from bus 270926 to bus 275232 ckt 1) loads from 105.67% to 112.25% (**DC power flow**) of its load dump rating (1379 MVA) for the line fault with failed breaker contingency outage of 'COMED\_P4\_112-65-BT5-6\_\_'. This project contributes approximately 129.79 MW to the thermal violation.

CONTINGENCY 'COMED\_P4\_112-65-BT5-6\_\_'

TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765

TRIP BRANCH FROM BUS 275233 TO BUS 270644 CKT 1 / WILTO;4M 345 WILTO; 765

TRIP BRANCH FROM BUS 275233 TO BUS 270927 CKT 1 / WILTO;4M 345 WILTO; R 345

TRIP BRANCH FROM BUS 275233 TO BUS 275333 CKT 1 / WILTO;4M 345 WILTO;4C 33

END

| Bus Number | Bus Name     | Full Contribution |
|------------|--------------|-------------------|
| 934431     | AD1-067 C    | 0.12              |
| 934432     | AD1-067 E    | 0.52              |
| 934721     | AD1-100 C    | 22.9              |
| 934722     | AD1-100 E    | 106.89            |
| 935141     | AD1-148      | 3.78              |
| 274857     | BIG SKY ;U1  | 1.29              |
| 274858     | BIG SKY ;U2  | 1.29              |
| 274877     | BISHOP HL;1U | 1.01              |
| 274878     | BISHOP HL;2U | 1.01              |
| 294401     | BSHIL;1U E   | 4.04              |
| 294410     | BSHIL;2U E   | 4.04              |
| 274848     | CAMPGROVE;RU | 1.49              |
| 274890     | CAYUG;1U E   | 7.83              |
| 274891     | CAYUG;2U E   | 7.83              |
| 274863     | CAYUGA RI;1U | 1.96              |
| 274864     | CAYUGA RI;2U | 1.96              |
| 274849     | CRESCENT;1U  | 2.78              |
| 274859     | EASYR;U1 E   | 5.15              |
| 274860     | EASYR;U2 E   | 5.15              |
| 274856     | ECOGROVE ;U1 | 1.1               |
| 937871     | G858         | 2.23              |
| 274871     | GR RIDGE ;2U | 2.38              |
| 274847     | GR RIDGE ;BU | 1.87              |
| 274855     | GSG-6 ;RU    | 1.23              |
| 290051     | GSG-6; E     | 4.91              |
| 937751     | H008         | 2.33              |
| 937881     | H071         | 2.35              |
| 937801     | J112         | 0.32              |
| 938091     | J395         | 7.69              |
| 938111     | J407         | 11.85             |
| 938131     | J416         | 12.03             |

| 938231           | J443               | 2.67             |
|------------------|--------------------|------------------|
| 938241           | J449               | 12.68            |
| 938691           | J614               | 4.16             |
| 939211           | J628               | 4.3              |
| 939212           | J628 E             | 17.21            |
| 939261           | J715               | 1.65             |
| 939262           | J715 E             | 6.58             |
| 939861           | J844               | 4.27             |
| 939862           | J844 E             | 17.07            |
| 939571           | J855               | 1.22             |
| 939572           | J855 E             | 4.89             |
| 939711           | J897               | 2.15             |
| 939712           | J897 E             | 8.59             |
| 939721           | J898               | 1.26             |
| 939722           | J898 E             | 5.05             |
| 939771           | J926               | 1.34             |
| 939772           | J926 E             | 5.36             |
| 939791           | J928               | 1.32             |
| 939792           | J928 E             | 5.27             |
| 275149           | KEMPTON ;1E        | 9.04             |
| 990901           | L-005 E            | 5.95             |
| 274872           | LEE DEKAL;1U       | 2.74             |
| 290108           | LEEDK;1UE          | 11.4             |
| 274850           | MENDOTA H;RU       | 2.82             |
| 274879           | MINONK ;1U         | 2.27             |
| 293061           | N-015 E            | 7.5              |
| 293513           | O-009 C1           | 1.07             |
| 293514           | O-009 C2           | 0.54             |
| 293515           | O-009 C3           | 0.6              |
| 293516           | O-009 E1           | 4.28             |
| 293517           | O-009 E2           | 2.18             |
| 293518           | O-009 E3           | 2.4              |
| 293712           | O-029 C            | 1.14             |
| 293713           | O-029 C            | 0.63             |
| 293714           | O-029 C            | 0.58             |
| 293715           | O-029 E            | 4.58             |
| 293716           | O-029 E            | 2.51             |
| 293717<br>293771 | O-029 E<br>O-035 E | 2.31<br>3.03     |
| 293//1           | O-033 E<br>O22 E1  | 4.83             |
| 293645           | O22 E1<br>O22 E2   | 9.37             |
| 293043           | O50 E              | 9.09             |
| 294392           | P-010 E            | 9.52             |
| 294392           | P-046 E            | 4.38             |
| 274888           | PILOT HIL;1E       | 9.04             |
| 4/4000           | I ILOI IIIL, IE    | 7.U <del>1</del> |

| 2=100= | DVI 07 1111         | 2.26   |
|--------|---------------------|--------|
| 274887 | PILOT HIL;1U        | 2.26   |
| 274881 | PLEAS RDG;2U        | 2.26   |
| 274851 | PROVIDENC;RU        | 0.76   |
| 274662 | <i>QUAD CITI;1U</i> | 115.16 |
| 274663 | <i>QUAD CITI;2U</i> | 115.22 |
| 290261 | S-027 C             | 1.95   |
| 290265 | S-028 C             | 1.95   |
| 295110 | SUBLETTE C          | 0.18   |
| 295111 | SUBLETTE E          | 1.28   |
| 274861 | TOP CROP ;1U        | 1.21   |
| 274862 | TOP CROP ;2U        | 2.34   |
| 274853 | TWINGROVE;U1        | 7.8    |
| 274854 | TWINGROVE;U2        | 7.8    |
| 276150 | W2-048 E            | 1.04   |
| 905082 | W4-005 E            | 26.45  |
| 274874 | WALNR;2U            | 2.24   |
| 294502 | WALNR;2U E          | 8.96   |
| 295108 | WESTBROOK C         | 0.4    |
| 295109 | WESTBROOK E         | 2.63   |
| 909052 | X2-022 E            | 14.46  |
| 916211 | Z1-072              | 0.51   |
| 916221 | Z1-073              | 0.34   |
| 917501 | Z2-087 C            | 1.48   |
| 917502 | Z2-087 E            | 19.81  |
| 918051 | AA1-018 C           | 2.32   |
| 918052 | AA1-018 E           | 15.49  |
| 920272 | AA2-123 E           | 2.86   |
| 924041 | AB2-047 C O1        | 3.65   |
| 924042 | AB2-047 E O1        | 24.43  |
| 924261 | AB2-070 C O1        | 2.07   |
| 924262 | AB2-070 E O1        | 13.85  |
| 925301 | AB2-191 C           | 1.18   |
| 925302 | AB2-191 E           | 1.62   |
| 925581 | AC1-033 C           | 1.32   |
| 925582 | AC1-033 E           | 8.87   |
| 925771 | AC1-053 C           | 2.05   |
| 925772 | AC1-053 E           | 13.71  |
| 926821 | AC1-168 C O1        | 1.09   |
| 926822 | AC1-168 E O1        | 7.34   |
| 926841 | AC1-171 C 01        | 0.94   |
| 926842 | AC1-171 E O1        | 6.3    |
| 927202 | AC1-214 E O1        | 6.18   |
|        | •                   |        |

(CE - CE) The WILTON; R-WILTON; 4M 345 kV line (from bus 270927 to bus 275233 ckt 1) loads from 108.0% to 114.71% (**DC power flow**) of its load dump rating (1379 MVA) for the line fault with failed breaker contingency outage of 'COMED\_P4\_112-65-BT2-3\_\_'. This project contributes approximately 132.36 MW to the thermal violation.

CONTINGENCY 'COMED\_P4\_112-65-BT2-3\_\_'

TRIP BRANCH FROM BUS 270644 TO BUS 270607 CKT 1 / WILTO; 765 COLLI; 765

TRIP BRANCH FROM BUS 275232 TO BUS 270644 CKT 1 / WILTO;3M 345 WILTO; 765

TRIP BRANCH FROM BUS 275232 TO BUS 270926 CKT 1 / WILTO;3M 345 WILTO; B 345

TRIP BRANCH FROM BUS 275232 TO BUS 275332 CKT 1 / WILTO;3M 345 WILTO;3C 33

END

| Bus Number | Bus Name     | Full Contribution |
|------------|--------------|-------------------|
| 934431     | AD1-067 C    | 0.13              |
| 934432     | AD1-067 E    | 0.53              |
| 934721     | AD1-100 C    | 23.36             |
| 934722     | AD1-100 E    | 109.              |
| 935141     | AD1-148      | 3.86              |
| 274857     | BIG SKY ;U1  | 1.32              |
| 274858     | BIG SKY ;U2  | 1.32              |
| 274877     | BISHOP HL;1U | 1.03              |
| 274878     | BISHOP HL;2U | 1.03              |
| 294401     | BSHIL;1UE    | 4.13              |
| 294410     | BSHIL;2U E   | 4.13              |
| 274848     | CAMPGROVE;RU | 1.52              |
| 274890     | CAYUG;1U E   | 7.99              |
| 274891     | CAYUG; 2U E  | 7.99              |
| 274863     | CAYUGA RI;1U | 2.                |
| 274864     | CAYUGA RI;2U | 2.                |
| 274849     | CRESCENT;1U  | 2.84              |
| 274859     | EASYR;U1 E   | 5.26              |
| 274860     | EASYR;U2 E   | 5.26              |
| 274856     | ECOGROVE ;U1 | 1.12              |
| 937871     | G858         | 2.28              |
| 274871     | GR RIDGE ;2U | 2.43              |
| 274847     | GR RIDGE ;BU | 1.91              |
| 274855     | GSG-6 ;RU    | 1.25              |
| 290051     | GSG-6; E     | 5.01              |
| 937751     | H008         | 2.38              |
| 937881     | H071         | 2.4               |
| 937801     | J112         | 0.33              |
| 938091     | J395         | 7.85              |
| 938111     | J407         | 12.1              |
| 938131     | J416         | 12.29             |

| 020221 | 1442         | 2 72          |
|--------|--------------|---------------|
| 938231 | J443         | 2.73<br>12.95 |
| 938241 | J449         |               |
| 938691 | J614         | 4.25          |
| 939211 | J628         | 3.84          |
| 939212 | J628 E       | 15.36         |
| 939261 | J715         | 1.68          |
| 939262 | J715 E       | 6.72          |
| 939861 | J844         | 4.36          |
| 939862 | J844 E       | 17.43         |
| 939571 | J855         | 1.25          |
| 939572 | J855 E       | 4.99          |
| 939711 | J897         | 2.19          |
| 939712 | J897 E       | 8.78          |
| 939721 | J898         | 1.29          |
| 939722 | J898 E       | 5.16          |
| 939771 | J926         | 1.37          |
| 939772 | J926 E       | 5.48          |
| 939791 | J928         | 1.35          |
| 939792 | J928 E       | 5.38          |
| 275149 | KEMPTON ;1E  | 9.23          |
| 990901 | L-005 E      | 6.07          |
| 274872 | LEE DEKAL;1U | 2.79          |
| 290108 | LEEDK;1UE    | 11.65         |
| 274850 | MENDOTA H;RU | 2.88          |
| 274879 | MINONK ;1U   | 2.32          |
| 293061 | N-015 E      | 7.65          |
| 293513 | O-009 C1     | 1.09          |
| 293514 | O-009 C2     | 0.55          |
| 293515 | O-009 C3     | 0.61          |
| 293516 | O-009 E1     | 4.38          |
| 293517 | O-009 E2     | 2.22          |
| 293518 | O-009 E3     | 2.45          |
| 293712 | O-029 C      | 1.17          |
| 293713 | O-029 C      | 0.64          |
| 293714 | O-029 C      | 0.59          |
| 293715 | O-029 E      | 4.68          |
| 293716 | O-029 E      | 2.57          |
| 293717 | O-029 E      | 2.36          |
| 293771 | O-035 E      | 3.09          |
| 293644 | O22 E1       | 4.93          |
| 293645 | O22 E2       | 9.57          |
| 290021 | O50 E        | 9.29          |
| 294392 | P-010 E      | 9.72          |
| 294763 | P-046 E      | 4.48          |
| 274888 | PILOT HIL;1E | 9.23          |

| 274887 | PILOT HIL;1U        | 2.31   |
|--------|---------------------|--------|
| 274881 | PLEAS RDG;2U        | 2.31   |
| 274851 | PROVIDENC;RU        | 0.77   |
| 274662 | <i>QUAD CITI;1U</i> | 117.61 |
| 274663 | <i>QUAD CITI;2U</i> | 117.68 |
| 290261 | S-027 C             | 1.99   |
| 290265 | S-028 C             | 1.99   |
| 295110 | SUBLETTE C          | 0.18   |
| 295111 | SUBLETTE E          | 1.3    |
| 274861 | TOP CROP ;1U        | 1.23   |
| 274862 | TOP CROP ;2U        | 2.39   |
| 274853 | TWINGROVE;U1        | 7.96   |
| 274854 | TWINGROVE;U2        | 7.96   |
| 276150 | W2-048 E            | 1.06   |
| 905082 | W4-005 E            | 26.98  |
| 274874 | WALNR;2U            | 2.29   |
| 294502 | WALNR; 2U E         | 9.15   |
| 295108 | WESTBROOK C         | 0.41   |
| 295109 | WESTBROOK E         | 2.68   |
| 909052 | X2-022 E            | 14.75  |
| 916211 | <i>Z1-072</i>       | 0.52   |
| 916221 | Z1-073              | 0.34   |
| 917501 | Z2-087 C            | 1.51   |
| 917502 | Z2-087 E            | 20.21  |
| 918051 | AA1-018 C           | 2.37   |
| 918052 | AA1-018 E           | 15.83  |
| 920272 | AA2-123 E           | 2.92   |
| 924041 | AB2-047 C O1        | 3.72   |
| 924042 | AB2-047 E O1        | 24.93  |
| 924261 | AB2-070 C O1        | 2.11   |
| 924262 | AB2-070 E O1        | 14.13  |
| 925301 | AB2-191 C           | 1.2    |
| 925302 | AB2-191 E           | 1.66   |
| 925581 | AC1-033 C           | 1.35   |
| 925582 | AC1-033 E           | 9.06   |
| 925771 | AC1-053 C           | 2.09   |
| 925772 | AC1-053 E           | 13.99  |
| 926821 | AC1-168 C O1        | 1.12   |
| 926822 | AC1-168 E O1        | 7.49   |
| 926841 | AC1-171 C O1        | 0.96   |
| 926842 | AC1-171 E O1        | 6.44   |
| 927202 | <i>AC1-214 E O1</i> | 6.31   |