

Generation Interconnection System Impact Study Report for

Queue Project AF1-092

HUNTINGTON JCT. 138 KV

115 MW Capacity / 150 MW Energy

Table of Contents

1 In	troduction	4
2 Pr	reface	4
3 Ge	eneral	5
4 Po	oint of Interconnection	6
5 Co	ost Summary	6
6 Tr	ransmission Owner Scope of Work	8
6.1	Attachment Facilities	8
6.2	Direct Connection Cost Estimate	8
6.3	Non-Direct Connection Cost Estimate	8
7 In	cremental Capacity Transfer Rights (ICTRs)	9
8 Sc	chedule	9
9 In	terconnection Customer Requirements	9
10	Revenue Metering and SCADA Requirements	10
10.1	PJM Requirements	10
10.2	Meteorological Data Reporting Requirements	10
10.3	Interconnected Transmission Owner Requirements	10
11	Summer Peak Analysis	11
11.1	Generation Deliverability	11
11.2	Multiple Facility Contingency	11
11.3	Contribution to Previously Identified Overloads	11
11.4	Steady-State Voltage Requirements	11
11.5	Potential Congestion due to Local Energy Deliverability	11
11.6	System Reinforcements	11
12	Light Load Analysis	12
12.1	Generation Deliverability	12
12.2	Multiple Facility Contingency	12
12.3	Contribution to Previously Identified Overloads	12
12.4	Steady-State Voltage Requirements	12
12.5	Potential Congestion due to Local Energy Deliverability	12
12.6	System Reinforcements	13
12.7	Flow Gate Details	14

12	2.7.1 Index 1	15
12.8	3 Queue Dependencies	20
	Contingency Descriptions	
13 Sh	nort Circuit Analysis	23
14 St	ability and Reactive Power	23
15 Af	ffected Systems	23
15.1	TVA	23
15.2	Puke Energy Progress	23
	B MISO	
	LG&E	
	ttachment 1: One-Line Diagram and Site Map	

1 Introduction

This System Impact Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 205, as well as the System Impact Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is AEP

2 Preface

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an Interconnection Customer may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

An Interconnection Customer with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

3 General

The Interconnection Customer (IC), has proposed a Solar; Storage generating facility located in Huntington, Indiana. The installed facilities will have a total capability of 150 MW with 115 MW of this output being recognized by PJM as Capacity.

The proposed in-service date for this project is June 01, 2022. This study does not imply a TO commitment to this in-service date.

The objective of this System Impact Study is to determine budgetary cost estimates and approximate construction timelines for identified transmission facilities required to connect the proposed generating facilities to the ITO transmission system. These reinforcements include the Attachment Facilities, Local Upgrades, and Network Upgrades required for maintaining the reliability of the ITO transmission system.

Queue Number	AF1-092				
Project Name	HUNTINGTON JCT. 138 KV				
State	Indiana				
County	Huntington				
Transmission Owner	AEP				
MFO	150				
MWE	150				
MWC	115				
Fuel	Solar; Storage				
Basecase Study Year	2023				

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

4 Point of Interconnection

AF1-092 will interconnect with the AEP transmission system via expanding AEP's Huntington JCT 138 kV switching station.

To accommodate the interconnection at the Huntington JCT 138 kV switching station, the station must be expanded with four (4) new 138 kV circuit breakers, physically configured in a breaker and half bus arrangement, but operated as a ring-bus (Attachment 1). Installation of associated protection and control equipment, 138 kV line risers, SCADA, and 138 kV revenue metering will also be required. AEP reserves the right to specify the final acceptable configuration considering design practices, future expansion, and compliance requirements.

Installation of the generator lead first span exiting the POI station, including the first structure outside the AEP fence, will also be included in AEP's scope. In the case where the generator lead is a single span, the structure in the customer station will be the customer's responsibility.

5 Cost Summary

The AF1-092 project will be responsible for the following costs:

Description	Total Cost
Attachment Facilities	\$788,000
Direct Connection Network Upgrade	\$8,930,000
Non Direct Connection Network Upgrades	\$90,000**
Allocation for New System Upgrades*	\$0
Contribution to Previously Identified Upgrades*	\$0
Total Costs	\$9,808,000

^{*}As your project progress through the study process, as things withdraw, then this may result in changes to your cost allocation.

The estimates provided in this report are preliminary in nature, as they were determined without the benefit of detailed engineering studies. Final estimates will require an on-site review and coordination to determine final construction requirements. In addition, Stability analysis will be completed during the Facilities Study stage. It is possible that a need for additional upgrades could be identified by these studies.

This total cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 2016-36, 2016-25 I.R.B. (6/20/2016). If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

^{**}Duke-Indiana (MISO) will need to provide the cost estimates for P&C work at the Huntington 138 kV station needed to maintain protection coordination.

Note 1: PJM Open Access Transmission Tariff (OATT) section 217.3A outline cost allocation rules. The rules are further clarified in PJM Manual 14A Attachment B. The allocation of costs for a network upgrade will start with the first Queue project to cause the need for the upgrade. Later queue projects will receive cost allocation contingent on their contribution to the violation and are allocated to the queues that have not closed less than 5 years following the execution of the first Interconnection Service Agreement which identifies the need for this upgrade.

6 Transmission Owner Scope of Work

6.1 Attachment Facilities

The total preliminary cost estimate for the Attachment work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
138 kV Revenue Metering	\$388,000
Generator lead first span exiting the POI station, including the first structure outside the fence	\$400,000
Total Attachment Facility Costs	\$788,000

6.2 Direct Connection Cost Estimate

The total preliminary cost estimate for the Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Expand Huntington Junction 138 kV switching station into a four (4) circuit breaker 138 kV switching station physically configured in a breaker and half bus arrangement but operated as a ring-bus. Installation of associated protection and control equipment, 138 kV line risers and SCADA will also be required.	\$8,930,000
Total Direct Connection Facility Costs	\$8,930,000

6.3 Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. These costs do not include CIAC Tax Gross-up.

Description	Total Cost
Review Protection and Controls at the Sorenson 138 kV substation	\$45,000
Review Protection and Controls at Hummel Creek 138 kV substation	\$45,000
Review/upgrade P&C systems and settings at Huntington 138 kV station (Duke-Indiana/MISO)	*
Total Non-Direct Connection Facility Costs	\$90,000*

^{*}Duke-Indiana (MISO) will need to provide the cost estimates for P&C work at the Huntington 138 kV station needed to maintain protection coordination on this tieline.

7 Incremental Capacity Transfer Rights (ICTRs)

None.

8 Schedule

It is anticipated that the time between receipt of executed Agreements and Commercial Operation may range from 12 to 18 months if no line work is required. If line work is required, construction time would generally be between 24 to 36 months after Agreement execution.

9 Interconnection Customer Requirements

It is understood that the Interconnection Customer is responsible for all costs associated with this interconnection. The costs above are reimbursable to the Interconnected Transmission Owner. The cost of the Interconnection Customer's generating plant and the costs for the line connecting the generating plant to the Interconnected Transmission Owner's Transmission circuit are not included in this report; these are assumed to be the Interconnection Customer's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for the Interconnected Transmission Owner to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

Requirement from the PJM Open Access Transmission Tariff:

- 1. An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back Panel temperature (Fahrenheit)
- Irradiance (Watts/meter²)
- Ambient air temperature (Fahrenheit) (Accepted, not required)
- Wind speed (meters/second) (Accepted, not required)
- Wind direction (decimal degrees from true north) (Accepted, not required)

10.3 Interconnected Transmission Owner Requirements

The IC will be required to comply with all Interconnected Transmission Owner's revenue metering requirements for generation interconnection customers located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/

11 Summer Peak Analysis

The Queue Project AF1-092 was evaluated as a 150.0 MW (Capacity 115.0 MW) injection at the Huntington Jct. 138 kV substation in the AEP area. Project AF1-092 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-092 was studied with a commercial probability of 100.0 %. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

11.4 Steady-State Voltage Requirements

None

11.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

None

11.6 System Reinforcements

ID	ldx	Facility	Upgrade Description	Cost	Cost Allocated to AF1- 092	Upgrade Number
			TOTAL COST	\$0	\$0	

12 Light Load Analysis

The Queue Project AF1-092 was evaluated as a 115.0 MW injection at the Huntington Jct. 138 kV substation in the AEP area. Project AF1-092 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AF1-092 was studied with a commercial probability of 100.0 %. Potential network impacts were as follows:

12.1 Generation Deliverability

(Single or N-1 contingencies)

None

12.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies)

None

12.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
10214481 0	24321 1	05ALLE N	345. 0	AEP	24293 3	05RPMON E	345. 0	AEP	1	AEP_P1- 2_#744 1	singl e	897.0	122.49	124.0	DC	12.59

12.4 Steady-State Voltage Requirements

None

12.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

None

12.6 System Reinforcements

ID	ldx	Facility	Upgrade Description	Cost	Cost Allocated to AF1- 092	Upgrade Number
102144810,716 97795,7169779 3	1	05ALLEN 345.0 kV - 05RPMONE 345.0 kV Ckt 1	A sag study is required on 12.25 miles of line. Cost of sag study is \$49 K. New expected SE rating to be 1301 MVA. If the sag study concludes a complete Rebuild/Reconductor is required, the estimated cost is \$24.5 million. This overload is presently driven by a prior queue cycle and AF1-092 presently has no cost responsibility.	\$49 K	\$0	N6740
			TOTAL COST	\$0	\$0	

Note: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

12.7 Flow Gate Details

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

12.7.1 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
102144810	243211	05ALLEN	AEP	242933	05RPMONE	AEP	1	AEP_P1- 2 #7441	single	897.0	122.49	124.0	DC	12.59

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact	
243795	05HDWTR1G C	0.6617	80/20	0.6617	
243859	05FR-11G C	0.5315	80/20	0.5315	
243862	05FR-12G C	0.5234	80/20	0.5234	
243864	05FR-21G C	0.5586	80/20	0.5586	
243866	05FR-22G C	0.5342	80/20	0.5342	
243870	05FR-3G C	1.0820	80/20	1.0820	
243873	05FR-4G C	0.8379	80/20	0.8379	
246909	05MDL-1G C	1.1299	80/20	1.1299	
246910	05MDL-2G C	0.5593	80/20	0.5593	
246953	05TIMB G C	1.1144	80/20	1.1144	
246976	05MDL-3G C	0.5706	80/20	0.5706	
246979	05MDL-4G C	0.5565	80/20	0.5565	
246991	05WLD G1 C	0.3442	80/20	0.3442	
247255	05WLD G2 C	0.3614	80/20	0.3614	
247521	T-131 C	1.2976	80/20	1.2976	
247536	05BLUFF P WF	0.6334	80/20	0.6334	
247543	V3-007 C	0.6617	80/20	0.6617	
247556	T-127 C	0.5650	80/20	0.5650	
247901	05FR-12G E	2.0880	80/20	2.0880	
247902	05FR-21G E	2.2317	80/20	2.2317	
247904	05FR-3G E	4.3279	80/20	4.3279	
247905	05FR-4G E	3.3897	80/20	3.3897	
247906	05MDL-1G E	4.5112	80/20	4.5112	
247907	05MDL-2G E	2.2598	80/20	2.2598	
247911	05TIMB G E	4.4872	80/20	4.4872	
247912	05MDL-3G E	2.2598	80/20	2.2598	
247913	05MDL-4G E	2.2598	80/20	2.2598	
247925	T-131 E	5.1902	80/20	5.1902	
247929	S-071 E	2.5336	80/20	2.5336	
247943	T-127 E	2.2598	80/20	2.2598	
247958	05WLD G2 E	4.7233	80/20	4.7233	
247963	05HDWTR1G E	4.4282	80/20	4.4282	
274847	GR RIDGE ;BU	0.8867	80/20	0.8867	
274848	CAMPGROVE;RU	0.8106	80/20	0.8106	
274849	CRESCENT ;1U	0.2646	80/20	0.2646	
274850	MENDOTA H;RU	0.1479	80/20	0.1479	
274851	PROVIDENC;RU	0.4036	80/20	0.4036	
274853	TWINGROVE;U1	1.0327	80/20	1.0327	
274854	TWINGROVE;U2	1.0327	80/20	1.0327	
274855	GSG-6 ;RU	0.6229	80/20	0.6229	
274856	ECOGROVE ;U1	0.5602	80/20	0.5602	
274857	BIG SKY ;U1	0.6642	80/20	0.6642	

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
274858	BIG SKY ;U2	0.6642	80/20	0.6642
274859	EASYR;U1 E	2.6568	80/20	2.6568
274860	EASYR;U2 E	2.6568	80/20	2.6568
274861	TOP CROP ;1U	0.5944	80/20	0.5944
274862	TOP CROP ;2U	1.1539	80/20	1.1539
274863	CAYUGA RI;1U	0.8462	80/20	0.8462
274864	CAYUGA RI;2U	0.8462	80/20	0.8462
274871	GR RIDGE ;2U	1.1260	80/20	1.1260
274872	LEE DEKAL;1U	1.3755	80/20	1.3755
274877	BISHOP HL;1U	0.5424	80/20	0.5424
274878	BISHOP HL;2U	0.5424	80/20	0.5424
274879	MINONK ;1U	1.1437	80/20	1.1437
274880	GENERATOR;	1.1448	80/20	1.1448
274881	PILOT HIL;1E	4.2124	80/20	4.2124
274882	W4-005 E	7.6661	80/20	7.6661
274887	PILOT HIL;1U	1.0531	80/20	1.0531
274888	KELLYCK ;1U	1.0531	80/20	1.0531
274890	CAYUG;1U E	3.3849	80/20	3.3849
274891	CAYUG;2U E	3.3849	80/20	3.3849
275149	KELLYCK ;1E	4.2124	80/20	4.2124
276156	0-029 C	0.3034	80/20	0.3034
276157	O-029 C	0.3280	80/20	0.3280
276158	0-029 C	0.5986	80/20	0.5986
290021	050 E	4.5748	80/20	4.5748
290051	GSG-6; E	2.4917	80/20	2.4917
290108	LEEDK;1U E	5.7314	80/20	5.7314
290261	S-027 E	4.1309	80/20	4.1309
290265	S-028 E	4.1309	80/20	4.1309
293061	N-015 E	3.5466	80/20	3.5466
293513	O-009 C1	0.5603	80/20	0.5603
293514	O-009 C2	0.2843	80/20	0.2843
293515	O-009 C3	0.3143	80/20	0.3143
293516	O-009 E1	2.2425	80/20	2.2425
293517	O-009 E2	1.1390	80/20	1.1390
293518	O-009 E3	1.2543	80/20	1.2543
293644	022 E1	2.3777	80/20	2.3777
293645	022 E2	4.6155	80/20	4.6155
293715	O-029 E	2.3974	80/20	2.3974
293716	O-029 E	1.3145	80/20	1.3145
293717	O-029 E	1.2082	80/20	1.2082
293771	0-035 E	1.6146	80/20	1.6146
294392	P-010 E	4.5042	80/20	4.5042
294401	BSHIL;1U E	2.1697	80/20	2.1697
294410	BSHIL;2U E	2.1697	80/20	2.1697
294763	P-046 E	2.2409	80/20	2.2409
917501	Z2-087 C	0.7128	80/20	0.7128
917502	Z2-087 E	4.7700	80/20	4.7700
918051	AA1-018 C OP	0.5671	80/20	0.5671
923881	AB2-028 C	1.3189	80/20	1.3189
923882	AB2-028 E	8.8267	80/20	8.8267
924041	AB2-047 C O1	1.7776	80/20	1.7776
924042	AB2-047 E O1	11.8964	80/20	11.8964

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
924261	AB2-070 C O1	1.3040	80/20	1.3040
924262	AB2-070 E O1	8.7264	80/20	8.7264
925301	AB2-191	0.2389	80/20	0.2389
925581	AC1-033 C	0.7089	80/20	0.7089
925582	AC1-033 E	4.7456	80/20	4.7456
925771	AC1-053 C	1.2998	80/20	1.2998
925772	AC1-053 E	8.6986	80/20	8.6986
926821	AC1-168 C O1	0.5655	80/20	0.5655
926822	AC1-168 E O1	3.7949	80/20	3.7949
926841	AC1-171 C O1	0.5472	80/20	0.5472
926842	AC1-171 E O1	3.6552	80/20	3.6552
926861	AC1-173 C	0.4365	80/20	0.4365
926862	AC1-173 E	2.9101	80/20	2.9101
926901	AC1-176 C (Withdrawn:	0.5633	80/20	0.5633
	07/09/2020)		· ·	
926902	AC1-176 E (Withdrawn : 07/09/2020)	3.7871	80/20	3.7871
927201	AC1-214 C O1	1.0339	80/20	1.0339
927202	AC1-214 E O1	3.2867	80/20	3.2867
930041	AB1-006 C	0.7344	80/20	0.7344
930042	AB1-006 E	4.9151	80/20	4.9151
932601	AC2-080 C O1	1.5255	80/20	1.5255
932602	AC2-080 E O1	10.2089	80/20	10.2089
933281	AC2-140 C	3.1415	80/20	3.1415
933282	AC2-140 E	0.1653	80/20	0.1653
933591	AC2-176 C O1	0.2529	80/20	0.2529
933592	AC2-176 E O1	3.2458	80/20	3.2458
933601	AC2-177 C O1	1.3202	80/20	1.3202
933602	AC2-177 E O1	8.8350	80/20	8.8350
934431	AD1-067 C	0.0624	80/20	0.0624
934432	AD1-067 E	0.2625	80/20	0.2625
934721	AD1-100 C	8.9064	80/20	8.9064
934722	AD1-100 E	41.5632	80/20	41.5632
935141	AD1-148	2.4324	80/20	2.4324
936291	AD2-038 C O1	1.1084	80/20	1.1084
936292	AD2-038 E O1	7.4176	80/20	7.4176
936371	AD2-047 C O1	2.0411	80/20	2.0411
936372	AD2-047 E O1	9.9653	80/20	9.9653
936722	AD2-091 BAT	6.7775	80/20	6.7775
936752	AD2-096 BAT	3.0915	80/20	3.0915
936971	AD2-131 C	0.4852	80/20	0.4852
936972	AD2-131 E	2.4378	80/20	2.4378
937001	AD2-134 C	1.2996	80/20	1.2996
937002	AD2-134 E	5.3687	80/20	5.3687
937041	AD2-138 C	2.0653	80/20	2.0653
937042	AD2-138 E	9.6691	80/20	9.6691
937211	AD2-159 C	1.6529	80/20	1.6529
937212	AD2-159 E	7.7386	80/20	7.7386
938851	AE1-113 C	3.7652	80/20	3.7652
938852	AE1-113 E	13.3492	80/20	13.3492
938861	AE1-114 C O1	1.8877	80/20	1.8877
938862	AE1-114 E O1	6.4403	80/20	6.4403
939321	AE1-163 C O1	2.7852	80/20	2.7852

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
939322	AE1-163 E O1	17.1088	80/20	17.1088
939401	AE1-172 C O1	2.5611	80/20	2.5611
939402	AE1-172 E O1	12.0167	80/20	12.0167
939631	AE1-193 C	4.0357	80/20	4.0357
939632	AE1-193 E	27.0083	80/20	27.0083
939641	AE1-194 C	4.0357	80/20	4.0357
939642	AE1-194 E	27.0083	80/20	27.0083
939651	AE1-195 C	4.0357	80/20	4.0357
939652	AE1-195 E	27.0083	80/20	27.0083
939681	AE1-198 C	0.0001	80/20	0.0001
939682	AE1-198 E	6.9073	80/20	6.9073
939781	AE1-209 C O1	0.7508	80/20	0.7508
939782	AE1-209 E O1	5.0244	80/20	5.0244
939791	AE1-210 C O1	0.7508	80/20	0.7508
939792	AE1-210 E O1	5.0244	80/20	5.0244
940101	AE1-252 C O1	0.0001	80/20	0.0001
940102	AE1-252 E O1	10.7190	80/20	10.7190
940752	AE2-062 E	0.0743	80/20	0.0743
941561	AE2-153 C O1	2.1092	80/20	2.1092
941562	AE2-153 E O1	9.8748	80/20	9.8748
941571	AE2-154 C	1.8317	80/20	1.8317
941572	AE2-154 E	12.2583	80/20	12.2583
941691	AE2-169	2.6291	80/20	2.6291
941711	AE2-171	1.9833	80/20	1.9833
941721	AE2-172	2.9032	80/20	2.9032
941731	AE2-173 O1	3.4185	80/20	3.4185
942042	AE2-216 BAT	7.4553	80/20	7.4553
942111	AE2-223 C	1.0666	80/20	1.0666
942112	AE2-223 E	7.1378	80/20	7.1378
942421	AE2-255 C O1	1.4262	80/20	1.4262
942422	AE2-255 E O1	4.2786	80/20	4.2786
942651	AE2-281 C O1	0.3979	80/20	0.3979
942652	AE2-281 E O1	2.4441	80/20	2.4441
943021	AE2-325 C	2.6503	80/20	2.6503
943022	AE2-325 E	1.7627	80/20	1.7627
943381	AF1-009 C	0.3541	80/20	0.3541
943382	AF1-009 E	1.4164	80/20	1.4164
943401	AF1-011 C	0.7635	80/20	0.7635
943402	AF1-011 E	1.2816	80/20	1.2816
943781	AF1-046 C	3.4671	80/20	3.4671
943782	AF1-046 E	2.3114	80/20	2.3114
943791	AF1-047 C	1.2392	80/20	1.2392
943792	AF1-047 E	0.8262	80/20	0.8262
943801	AF1-048 C	2.2375	80/20	2.2375
943802	AF1-048 E	1.4917	80/20	1.4917
943921	AF1-060	0.7224	80/20	0.7224
944121	AF1-080	1.3540	80/20	1.3540
944221	AF1-090 C O1	1.6029	80/20	1.6029
944222	AF1-090 E O1	7.5043	80/20	7.5043
944232	AF1-091 E O1	16.9319	80/20	16.9319
944241	AF1-092 C O1	0.0001	80/20	0.0001
944242	AF1-092 E O1	12.5936	80/20	12.5936

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
944532	AF1-118 E O1	35.7980	80/20	35.7980
944542	AF1-119 E O1	17.6880	80/20	17.6880
944831	AF1-148 C O1	0.0001	80/20	0.0001
944832	AF1-148 E O1	15.9016	80/20	15.9016
944931	AF1-158 C O1	0.0001	80/20	0.0001
944932	AF1-158 E O1	12.5145	80/20	12.5145
944961	AF1-161 C	2.1135	80/20	2.1135
944962	AF1-161 E	2.1135	80/20	2.1135
945111	AF1-176 C O1	4.3602	80/20	4.3602
945112	AF1-176 E O1	6.5407	80/20	6.5407
945351	AF1-200 FTIR	121.4325	80/20	121.4325
945371	AF1-202 C O1	2.3251	80/20	2.3251
945372	AF1-202 E O1	11.3517	80/20	11.3517
945391	AF1-204 C O1	2.8994	80/20	2.8994
945392	AF1-204 E O1	8.6981	80/20	8.6981
945421	AF1-207 C	1.9519	80/20	1.9519
945422	AF1-207 E	8.3816	80/20	8.3816
945623	AF1-227 BAT	8.5370	80/20	8.5370
945871	AF1-252 O1	3.5518	80/20	3.5518
945881	AF1-253 O1	2.4589	80/20	2.4589
946161	AF1-281 C	0.2063	80/20	0.2063
946162	AF1-281 E	1.1693	80/20	1.1693
946203	AF1-285 BAT	2.4868	80/20	2.4868
946321	AF1-296 C O1	1.9731	80/20	1.9731
946322	AF1-296 E O1	9.2376	80/20	9.2376
946501	AF1-314 C	2.0853	80/20	2.0853
946502	AF1-314 E	9.7630	80/20	9.7630
946531	AF1-317 C O1	1.3794	80/20	1.3794
946532	AF1-317 E O1	2.0691	80/20	2.0691
946541	AF1-318 C O1	2.8950	80/20	2.8950
946542	AF1-318 E O1	13.5554	80/20	13.5554
990901	L-005 E	3.2425	80/20	3.2425

12.8 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AA1-018	Powerton-Goodings Grove	In Service
AB1-006	Meadow Lake 345kV	In Service
AB2-028	Fall Creek-Desoto 345kV	Active
AB2-047	Brokaw-Pontiac Midpoint	Engineering and Procurement
AB2-070	Brokaw-Lanesville	Active
AB2-191	Mendota Hills	In Service
AC1-033	Kewanee	Active
AC1-053	Lanesville-Brokaw	Active
AC1-168	Kewanee-Streator	Active
AC1-171	Powerton	Active
AC1-173	Logtown 138kV	In Service
AC1-176	Timber Switch 138kV	Withdrawn
AC1-214	Crescent Ridge	Engineering and Procurement
AC2-080	Olive-Reynolds 345kV	Active
AC2-140	DC Cook Unit 2	Engineering and Procurement
AC2-176	Jay 138 kV	Under Construction
AC2-177	Desoto-Tanners Creek 345kV	Active
AD1-067	Mendota Hills	Active
AD1-100	Loretto-Wilton & Braidwood-Davis Creek	Active
AD1-148	Brokaw-Lanesville	Active
AD2-038	Powerton	Active
AD2-047	Davis Creek 138 kV	Active
AD2-091	Hardin Tap 345kV	Active
AD2-096	Marysville 345kV	Active
AD2-131	Latham Kincaid	Active
AD2-134	Shady Oaks	Active
AD2-138	Olive-Reynolds 345kV	Active
AD2-159	Chestnut 345kV	Active
AE1-113	Mole Creek 345 kV	Active
AE1-114	Maryland-Lancaster 138 kV	Active
AE1-163	Powerton-Nevada 345 kV	Active
AE1-172	Loretto-Wilton Center	Active
AE1-193	Crete 345 kV	Active
AE1-194	Crete 345 kV	Active
AE1-195	Crete 345 kV	Active
AE1-198	Crete 345 kV	Active
AE1-209	Desoto 345 kV	Active
AE1-210	Desoto 345 kV	Active
AE1-252	Loretto-Wilton Center	Active

Queue Number	Project Name	Status
AE2-062	Normantown	Active
AE2-153	Braidwood-Davis Creek	Active
AE2-154	Meadow Lake 345 kV (MLV VIII)	Active
AE2-169	Delaware-Van Buren 138 kV	Active
AE2-171	Makahoy 138 kV	Active
AE2-172	Mississinewa-Gaston 138 kV	Active
AE2-173	McLean 345 kV	Active
AE2-216	Hardin Switch 345 kV	Active
AE2-223	McLean 345 kV	Active
AE2-255	Molecreek 345 kV	Active
AE2-281	Powerton-Nevada 345 kV	Active
AE2-325	Valley 138 kV	Active
AF1-009	Dixon-McGirr	Active
AF1-011	Schauff Road	Active
AF1-046	Twin Branch-Guardian 138 kV	Active
AF1-047	Mark Center 69 kV	Active
AF1-048	Belvidere-Marengo	Active
AF1-060	Lena 138 kV	Active
AF1-080	Deer Creek-Fisher Body-Mullin 138 kV	Active
AF1-090	Kincaid-Pana	Active
AF1-091	Butler-S Hicksville 138 kV	Active
AF1-092	Huntington Jct. 138 kV	Active
AF1-118	Sorenson-Desoto 345 kV	Active
AF1-119	Keystone-Desoto 345 kV	Active
AF1-148	Sorenson-Desoto 345 kV	Active
AF1-158	Edison-Gravel Pit 138 kV	Active
AF1-161	Valley 138 kV	Active
AF1-176	Corey 138 kV	Active
AF1-200	Plano 345 kV	Active
AF1-202	Keystone-Desoto 345 kV	Active
AF1-204	Eugene 345 kV	Active
AF1-207	Reynolds–Olive #1 345 kV	Active
AF1-227	Marysville-East Lima 345 kV	Active
AF1-252	Kincaid-Pana	Active
AF1-253	Kincaid-Pana	Active
AF1-281	Nelson-Lee County	Active
AF1-285	Gunn Road 345 kV	Active
AF1-296	Garden Plain 138 kV	Active
AF1-314	Lena 138 kV	Active
AF1-317	Electric Jct-Nelson	Active
AF1-318	Crescent Ridge-Corbin	Active
V3-007	Desoto-Tanners Creek #1 345kV	Under Construction
W4-005	Blue Mound-Latham	Partially in Service - Under Construction
Z2-087	Pontiac MidPoint-Brokaw 345kV	In Service

12.9 Contingency Descriptions

Contingency Name	Contingency Definition
AEP_P1-2_#7441	CONTINGENCY 'AEP_P1-2_#7441' OPEN BRANCH FROM BUS 242928 TO BUS 246999 CKT 1 / 242928 05MARYSV 765 246999 05SORENS 765 1 END
AEP_P4_#7445_05MARYSV 765_B	CONTINGENCY 'AEP_P4_#7445_05MARYSV 765_B' OPEN BRANCH FROM BUS 242922 TO BUS 242928 CKT 1 / 242922 05FLTLCK 765 242928 05MARYSV 765 1 OPEN BRANCH FROM BUS 242928 TO BUS 246999 CKT 1 / 242928 05MARYSV 765 246999 05SORENS 765 1 END
AEP_P4_#7446_05MARYSV 765_B2	CONTINGENCY 'AEP_P4_#7446_05MARYSV 765_B2' OPEN BRANCH FROM BUS 242928 TO BUS 246999 CKT 1 / 242928 05MARYSV 765 246999 05SORENS 765 1 OPEN BRANCH FROM BUS 242928 TO BUS 242939 CKT 2 / 242928 05MARYSV 765 242939 05MARYSV 345 2 END

13 Short Circuit Analysis

The following Breakers are overdutied

None.

14 Stability and Reactive Power

To be determined in the Facilities Study Phase

15 Affected Systems

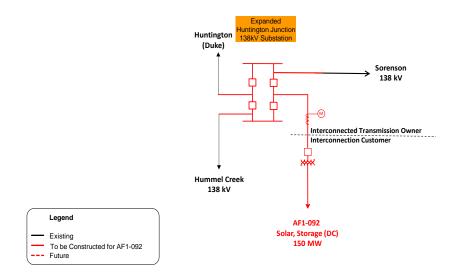
15.1 TVA

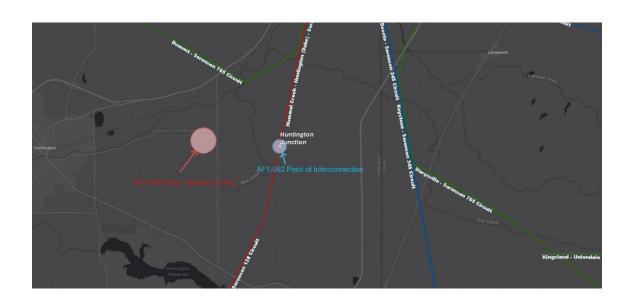
TVA Impacts to be determined during later study phases (as applicable).

15.2 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

15.3 MISO


MISO Impacts to be determined during later study phases (as applicable).


15.4 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

16 Attachment 1: One-Line Diagram and Site Map

AF1-092 Point of Interconnection Expand Huntington Junction 138 kV Substation

