

Generation Interconnection System Impact Study Report for

Queue Project AG1-221

POLAND RD-RUNWAY DP 230 KV

20 MW Capacity / 50 MW Energy

Table of Contents

1	Int	troduction	4
2	Pr	reface	4
3	Ge	eneral	5
4	Po	oint of Interconnection	6
5	Со	ost Summary	6
6	Tr	ransmission Owner Scope of Work	7
7	Sc	hedule	8
8	Tr	ransmission Owner Analysis	8
8	.1	Power Flow Analysis	9
9	Int	terconnection Customer Requirements	9
9	.1	System Protection	9
9	.2	Compliance Issues and Interconnection Customer Requirements	9
9	.3	Power Factor Requirements	10
10		Revenue Metering and SCADA Requirements	10
1	0.1	PJM Requirements	10
1	0.2	Interconnected Transmission Owner Requirements	10
11		Summer Peak Analysis	10
1	1.1	Generation Deliverability	10
1	1.2	Multiple Facility Contingency	10
1	1.3	Contribution to Previously Identified Overloads	11
1	1.4	Steady-State Voltage Requirements	11
1	1.5	Potential Congestion due to Local Energy Deliverability	11
1	1.6	System Reinforcements	12
1	1.7	Queue Dependencies	12
1	1.8	Contingency Descriptions	12
12		Light Load Analysis	13
1	2.1	Light Load Deliverability	13
1	2.2	Multiple Facility Contingency	13
1	2.3	Contribution to Previously Identified Overloads	13
1	2.4	Steady-State Voltage Requirements	13
1	2.5	Potential Congestion due to Local Energy Deliverability	13

12.6	System Reinforcements	14
	7 Queue Dependencies	
	Contingency Descriptions	
	Short Circuit Analysis	
13.1	System Reinforcements - Short Circuit	20
14	Stability and Reactive Power	20
15	Affected Systems	20
16	Attachment 1: One Line Diagram	21

1 Introduction

This System Impact Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 205, as well as the System Impact Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is Dominion.

2 Preface

The intent of the System Impact Study is to determine a plan, with approximate cost and construction time estimates, to connect the subject generation interconnection project to the PJM network at a location specified by the Interconnection Customer. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system. All facilities required for interconnection of a generation interconnection project must be designed to meet the technical specifications (on PJM web site) for the appropriate transmission owner.

In some instances an Interconnection Customer may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection or merchant transmission upgrade, may also contribute to the need for the same network reinforcement. The possibility of sharing the reinforcement costs with other projects may be identified in the Feasibility Study, but the actual allocation will be deferred until the System Impact Study is performed.

The System Impact Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

3 General

The Interconnection Customer (IC), has proposed a Storage generating facility located in Loudoun County, Virginia. The installed facilities will have a total capability of 50 MW with 20 MW of this output being recognized by PJM as Capacity. The proposed in-service date for this project is June 01, 2023. This study does not imply a TO commitment to this in-service date.

Queue Number	AG1-221		
Project Name	POLAND RD-RUNWAY DP 230 KV		
State	Virginia		
County	Loudoun		
Transmission Owner	Dominion		
MFO	50		
MWE	50		
MWC	20		
Fuel	Storage		
Basecase Study Year	2024		

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

4 Point of Interconnection

AG1-221 "Poland Rd-Runway DP 230 kV" will interconnect with the Dominion transmission system. The primary POI is a direct connect to the new substation to be constructed for the AF1-147 project.

The IC is responsible for securing right-of-way, permits, and constructing the proposed attachment line from the generating facility site to the Point of Interconnection. The IC may not install any facilities on Dominion's right-of-way without first obtaining the necessary approval from Dominion Energy.

Costs provided are contingent on the AF1-147 project being built. Should the AF1-147 project withdraw from the Interconnection Queue, the AG1-221 project will assume the Attachment, Direct Connection, and Non-Direct Connection costs identified in the AF1-147 study report for connection to the Dominion system.

Attachment 1 shows a one-line diagram of the proposed interconnection facilities.

5 Cost Summary

The AG1-221 project will be responsible for the following costs:

Description	Total Cost
Total Physical Interconnection Costs	\$3,300,000
Allocation towards System Network Upgrade Costs (PJM Identified - Summer Peak)*	\$0
Allocation towards System Network Upgrade Costs (PJM Identified - Light Load)*	\$0
Total Costs	\$3,300,000

^{*}As your project progresses through the study process and other projects modify their request or withdraw, then your cost allocation could change.

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 88-129. If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Note 1: PJM Open Access Transmission Tariff (OATT) section 217.3A outline cost allocation rules. The rules are further clarified in PJM Manual 14A Attachment B. The allocation of costs for a network upgrade will start with the first Queue project to cause the need for the upgrade. Later queue projects will receive cost allocation contingent on their contribution to the violation and are allocated to the queues that have not closed less than 5 years following the execution of the first Interconnection Service Agreement which identifies the need for this upgrade.

Note 2: For customers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that as changes to the interconnection process occur, such as prior queued projects withdrawing from the queue, reducing in size, etc, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although your present cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project comes into service prior to completion of the system reinforcement, an interim deliverability study for your project will be required.

6 Transmission Owner Scope of Work

The required Attachment Facilities, Direct Connection and Non-Direct Connection work for the interconnection of AG1-221 to the Dominion Transmission System is detailed in the following sections. The associated one-line showing the generation project attachment facilities and primary direct and non-direct connection is shown in Attachment 1.

Note that the ITO findings were made from a conceptual review of this project. A more detailed review of the connection facilities and their cost will be identified in a future study phase. Further note that the cost estimate data contained in this document should be considered high level estimates since it was produced without a detailed engineering review. The applicant will be responsible for the actual cost of construction. ITO herein reserves the right to return to any issues in this document and, upon appropriate justification, request additional monies to complete any reinforcements to the transmission systems.

The total physical interconnection costs are given in the table below:

Description	Total Cost
Attachment Facilities	\$2,100,000
New Breaker	\$1,200,000
Total Physical Interconnection Costs	\$3,300,000

AG1-221 "Poland Rd-Runway DP 230 kV" will interconnect with the Dominion transmission system. The primary POI is a direct connect to the new substation to be constructed for the AF1-147 project.

To accommodate the proposed Project, Dominion Energy will add one new 230 kV breaker to the AF1-147 substation to allow for the proposed interconnection. Dominion will install one span of overhead 230 kV line to the point of interconnection ("POI") including 230 kV interconnection metering.

It is estimated to take 24-30 months to complete this work upon execution of an Interconnection Construction Service Agreement (ICSA). These preliminary cost estimates are based on typical engineering costs. A more detailed engineering cost estimates are normally done when the IC provides an exact site plan location for the generation substation during the Facility Study phase.

<u>Remote Terminal Work:</u> During the Facilities Study, ITO's System Protection Engineering Department will review transmission line protection as well as anti-islanding required to accommodate the new generation and interconnection substation. System Protection Engineering will determine the minimal acceptable protection requirements to reliably interconnect the proposed generating facility with the transmission system. The review is based on maintaining system reliability by reviewing ITO's protection requirements with the known transmission system configuration which includes generating facilities in the area. This review may determine that transmission line protection and communication upgrades are required at remote substations.

7 Schedule

Based on the scope of work for the interconnection facilities, it is expected to take a minimum of 24-30 months after the signing of an Interconnection Construction Service Agreement (or "Interconnection Agreement" if non-FERC) and construction kickoff call to complete the installation of the physical connection work. This assumes that there will be no environmental issues with any of the new properties associated with this project, that there will be no delays in acquiring the necessary permits for implementing the defined interconnection work, and that all system outages will be allowed when requested.

The schedule for any required Network Impact Reinforcements will be more clearly identified in future study phases. The estimated time to complete each of the required reinforcements is identified in the "System Reinforcements" section of the report.

8 Transmission Owner Analysis

Dominion assessed the impact of the proposed AG1-221 for compliance with NERC Reliability Criteria on the Dominion Transmission System. The system was assessed using the summer 2024 AG1 case provided to Dominion by PJM.

When performing a generation analysis, Dominion's main analysis includes load flow study results following a single contingency event for both normal and stressed system conditions. Dominion Criteria considers a transmission facility overloaded if it exceeds 94% of its emergency rating under normal and stressed system conditions. A full listing of Dominion's Planning Criteria and interconnection requirements can be found in the Company's Facility Connection Requirements which are publicly available at: http://www.dominionenergy.com.

The results of these studies evaluate the system under a limited set of operating conditions and do not guarantee the full delivery of the capacity and associated energy of this proposed generation facility under all operating conditions. NERC Planning and Operating Reliability Criteria allow for the re-dispatch of generating units to resolve projected and actual deficiencies in real time and planning studies. Specifically, in Planning Studies, NERC Planning Event 3 and 6 Contingency Conditions (Loss of generator, transmission circuit, transformer, shunt device, or Single Pole of a DC line followed by the loss of a generator, transmission circuit,

transformer, shunt device or single pole of a DC line) allow for re-dispatch of generating units to resolve potential reliability deficiencies. For Dominion Planning Criteria the re-dispatch of generating units for these contingency conditions is allowed as long as the projected loading does not exceed 100% of a facility Load Dump Rating.

8.1 Power Flow Analysis

PJM performed a power flow analysis of the transmission system using a 2024 summer peak load flow model and the results were verified by Dominion. Additionally, Dominion performed an analysis of its transmission system and no further deficiencies were identified.

9 Interconnection Customer Requirements

9.1 System Protection

The IC must design its Customer Facilities in accordance with all applicable standards, including the standards in Dominion's "Dominion Energy Electric Transmission Generator Interconnection Requirements" documented in Dominion's Facility Interconnection Requirements "Exhibit C" located at:

https://www.dominionenergy.com/company/moving-energy/electric-transmission-access. Preliminary Protection requirements will be provided as part of the Facilities Study. Detailed Protection Requirements will be provided once the project enters the construction phase.

9.2 Compliance Issues and Interconnection Customer Requirements

The proposed Customer Facilities must be designed in accordance with Dominion's "Dominion's Facility Interconnection Requirements" document located at: https://www.dominionenergy.com/company/moving-energy/electric-transmission-access. In particular, the IC is responsible for the following:

- 1. The purchase and installation of a fully rated protection device (circuit breaker, circuit switcher, fuse) to protect the IC's GSU transformer(s).
- 2. The purchase and installation of the minimum required Dominion generation interconnection relaying and control facilities as described in the System Protection section noted above. This includes over/under voltage protection, over/under frequency protection, and zero sequence voltage protection relays.
- 3. The purchase and installation of supervisory control and data acquisition ("SCADA") equipment to provide information in a compatible format to the Dominion Transmission System Control Center.
- 4. Compliance with the Dominion and PJM generator power factor and voltage control requirements.

The GSU(s) associated with the IC queue request shall meet the grounding requirements as noted in Dominion's "Dominion's Facility Interconnection Requirements" document located at: https://www.dominionenergy.com/company/moving-energy/electric-transmission-access.

The IC will also be required to meet all PJM, SERC, and NERC reliability criteria and operating procedures for standards compliance. For example, the IC will need to properly locate and report the over and under voltage and over and under frequency system protection elements for its units as well as the submission of the generator model and protection data required to satisfy the PJM and SERC audits. Failure to comply with these requirements may result in a disconnection of service if the violation is found to compromise the reliability of the Dominion system.

9.3 Power Factor Requirements

The IC shall design its non-synchronous Customer Facility with the ability to maintain a power factor of at least 0.95 leading (absorbing VARs) to 0.95 lagging (supplying VARs) measured at the high-side of the facility substation transformer(s) connected to the Dominion transmission system.

10 Revenue Metering and SCADA Requirements

10.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

10.2 Interconnected Transmission Owner Requirements

The IC will be required to comply with all Interconnected Transmission Owner's revenue metering requirements for generation interconnection customers located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/

11 Summer Peak Analysis

The Queue Project AG1-221 was evaluated as a 50.0 MW (Capacity 20.00 MW) injection tapping the Poland Rd to Runway DP 230 kV line in the Dominion area. Project AG1-221 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-221 was studied with a commercial probability of 100.0 %. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

11.4 Steady-State Voltage Requirements

To be determined

11.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS AREA	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
16763438	22393	DICKH23	230.	PEPC	22393	DICK	230.	PEPC	2	PEPCO_P1_PP	operatio	680.0	98.77	99.88	AC	7.57
5	8	0	0	0	7	230	0	0		1	n					
16763438	22393	DICKH23	230.	PEPC	22393	DICK	230.	PEPC	1	PEPCO_P1_PP	operatio	680.0	98.77	99.88	AC	7.57
8	8	0	0	0	7	230	0	0		2	n					
18566425	31417	6BRAMB	230.	DVP	31382	6EVERG	230.	DVP	1	DVP_P1-2: LN	operatio	984.2	83.68	85.92	AC	22.19
5	1	L	0		7	R MILL	0			2137-B	n					

11.6 System Reinforcements

None

11.7 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status		
AC1-056	PJM-AMIL	Confirmed		
AC1-131	PJM-CPLE	Confirmed		
AG1-221	Poland Rd-Runway DP 230 kV	Active		
AG1-534	Evergreen Mills 230 kV	Active		

11.8 Contingency Descriptions

Contingency Name	Contingency Definition						
PEPCO_P1_PP1	CONTINGENCY 'PEPCO_P1_PP1' OPEN BRANCH FROM BUS 223937 TO BUS 223938 223938 DICKH230 230 1 END	8 CKT 1	/ 223937 DICK 230 230				
PEPCO_P1_PP2	CONTINGENCY 'PEPCO_P1_PP2' OPEN BRANCH FROM BUS 223937 TO BUS 223938 223938 DICKH230 230 2 END	8 CKT 2	/ 223937 DICK 230 230				
DVP_P7-1: LN 227-274	OPEN BUS 314170 /* I OPEN BRANCH FROM BUS 314004 TO BUS 314010 6BEAMEAD 230.00 OPEN BRANCH FROM BUS 314004 TO BUS 314072 VIEW 230.00 OPEN BUS 314004 /* I OPEN BUS 314354 /* I	0 CKT 1 0 CKT 1 ISLAND: 6ASHBU ISLAND: 6COHM 0 CKT 1	IIL 230.00 /* 6ASHBURN 230.00 - /* 6ASHBURN 230.00 - 6PL JRN 230.00 JRN_2 230.00				

Contingency Name	Contingency Definition	
DVP_P1-2: LN 2137-B	CONTINGENCY 'DVP_P1-2: LN 2137-B' OPEN BRANCH FROM BUS 944820 TO BUS 313864 CKT 1 6POLAND RD 230.00 END	/* AF1-147 TAP 230.00 -

12 Light Load Analysis

The Queue Project AG1-221 was evaluated as a 50.1 MW (Capacity 50.1 MW) injection tapping the Poland Rd to Runway DP 230 kV line in the Dominion area. Project AG1-221 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-221 was studied with a commercial probability of 100.0 %. Potential network impacts were as follows:

12.1 Light Load Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

12.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

12.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

None

12.4 Steady-State Voltage Requirements

To be determined

12.5 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection

Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAM E	Type	Rating MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
17859059	22393	DICK 230	230.	PEPC	31429	6EDFERR	230.	DVP	1	AP-	operatio	1417.0	91.21	92.56	DC	14.53
5	7		0	0	0	Υ	0			P1-2-	n					
										PE-						
										500-						
										407T						
17859047	31429	6EDFERR	230.	DVP	31407	6PL	230.	DVP	1	AP-	operatio	1327.280029	96.27	97.71	DC	14.53
0	0	Y	0		2	VIEW	0			P1-2-	n	3				
										PE-						
										500-						
										407T						

12.6 System Reinforcements

None

12.7 Queue Dependencies

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AA1-038	Lexington-Low Moor 230kV	Engineering and Procurement
AA2-017	East Palmerton-Acahela 69kV	Suspended
AA2-048	Allenwood-Larrabee 34kV	Engineering and Procurement
AA2-060	Branchville-Sussex #1 34kV	Engineering and Procurement
AA2-061	Branchville-Sussex #2 34.5kV	Engineering and Procurement
AB1-182	Bear Creek	Suspended
AC1-071	Paupack-Lackawanna 230kV	Suspended
AC2-053	Germantown 115kV	Suspended
AD1-143	Hauto-Siegfried 69 kV	Suspended
AD2-025	Hillsborough 13 kV	Suspended
AD2-059	Chapel Street 138 kV	Active
AD2-077	Buxmont 69 kV	Active
AE1-051	East Carbondale-Lackawanna 69kV	Active
AE1-060	Kittatinny-Newton 34.5 kV	Active
AE1-061	Minotola 12 kV	Active
AE1-062	Silver Lake 69 kV	Active
AE1-087	Todd 69 kV	Engineering and Procurement
AE1-104	BL England 138 kV	Active
AE1-115	Churchtown 69 kV	Active
AE1-145	Wallops Island 69 kV	Active

Queue Number	Project Name	Status
AE1-147	Bellefonte 46 kV	Engineering and Procurement
AE1-161	Landis 138 kV	Active
AE1-243	Warren Glen Storage 34.5 kV	Active
AE2-000	N/A	N/A
AE2-019	New Road 230 kV	Active
AE2-020	Cardiff 230 kV I	Active
AE2-021	Cardiff 230 kV II	Active
AE2-022	Cardiff 230 kV III	Active
AE2-024	Larrabee 230 kV I	Active
AE2-025	Larrabee 230 kV II	Active
AE2-040	Sapony 34.5 kV	Active
AE2-041	Harmony Village 230 kV	Active
AE2-046	Harwood-East Hazelton 69 kV	Active
AE2-052	Disputanta-Poe 115 kV	Active
AE2-053	Kerr Dam-Ridge Road 115 kV	Active
AE2-150	Bakers Pond-Bell Ave 115 kV	Active
AE2-156	Yadkin 115 kV	Active
AE2-222	Higbee 69 kV	Active
AE2-237	Vernon-Sugar Loaf #2 115 kV	Active
AE2-251	Cardiff 230 kV	Active
AE2-257	Cedar Neck 69 kV	Active
AE2-270	Hopewell-Surry 230 kV	Active
AE2-295	Eldred 230 kV	Active
AF1-007	Indian River 230 kV I	Active
AF1-018	Harmony Village 230 kV	Active
AF1-019	Branchville-Holiday Lakes 34.5 kV	Active
AF1-026	Edge Road Battery Storage (CIRs)	In Service
AF1-027	Plumsted 537 Energy Storage (CIRs)	In Service
AF1-040	Gratz Tap 69 kV	Active
AF1-059	Brodnax-South Hill 115 kV	Active
AF1-066	New Road 230 kV	Active
AF1-082	Heartsease-Mayo Dunbar DP	Active
AF1-099	Moshannon-Milesburg 230 kV	Active
AF1-101	Oyster Creek 230 kV III	Active
AF1-105	Glen Gardner 34.5 kV	Active
AF1-106	East Sayre 34.5 kV	Active
AF1-108	East Flemington 34.5 kV	Active
AF1-109	Pleasant Valley 230 kV	Active
AF1-142	Moshannon-Milesburg 230 kV	Active
AF1-160	Silver Lake 69 kV	Active
AF1-201	Hayes-White Marsh 115 kV	Active
AF1-208	Quinton-Roadstown 69 kV	Active
AF1-222	Oceanview Wind 2 230 kV	Active
AF1-231	New Church 138 kV	Active
AF1-237	Mercer 230 kV	Active
AF1-238	Sherman Ave. 69 kV	Active
AF1-239	Sherman Ave-Vineland 69 kV	Active
AF1-244	Kingston 12 kV	Active
AF1-245	Hudson 230 kV	Active
AF1-265	Four Rivers-Hanover 230 kV	Active
AF1-266	Clubhouse-Sapony 230 kV	Active
AF1-293	Kidds Store-Fort Union 115 kV	Active

Queue Number	Project Name	Status
AF1-320	Merrill Creek 115 kV	Active
AF1-325	Sparta-Woodruff's Gap 34.5 kV	Active
AF1-328	Hackettstown-Pohatcong 34.5 kV	Active
AF2-013	Arnold's Corner-Dahlgren 230 kV	Active
AF2-016	Lewis 138 kV	Active
AF2-019	Middle 69 kV	Active
AF2-020	Caril's Corner 69 kV	Active
AF2-021	Cedar 69 kV	Active
AF2-023	Churchtown 69 kV	Active
AF2-024	Mickleton 69 kV	Active
AF2-025	Missouri Ave 69 kV	Active
AF2-030	Ontelaunee 230 kV	Active
AF2-038	Printz 230 kV	Withdrawn
AF2-040	Elk Run-Gainesville 230 kV	Active
AF2-055	Plaintation Creek 69 kV	Active
AF2-057	Grassfield 34.5 kV	Active
AF2-060	Wattsville 12 kV	Active
AF2-061	Wattsville 69kV	Active
AF2-071	Windsor 230 kV	Active
AF2-072	Larrabee 230 kV	Active
AF2-085	Midlothian 34.5 kV	Engineering and Procurement
AF2-108	Locks 34.5 kV	Active
AF2-144	Powhatan 34.5 kV	Active
AF2-193	Indian River 230 kV I	Active
AF2-194	Indian River 230 kV II	Active
AF2-196	Cedar Neck 69 kV II	Active
AF2-197	East Towanda 115 kV	Active
AF2-207	Nelson 69 kV	Active
AF2-208	Colora 230 kV	Active
AF2-213	Zions View-Smith Street 115 kV	Active
AF2-232	Bowmanns Mill Tap-Scott 69 kV	Active
AF2-233	Penns-Richfield Tie #1 69 kV	Active
AF2-234	Sunbury Yard #1-Richfield Tie #2 69 kV	Active
AF2-249	Edgewood 12 kV II	Active
AF2-251	Susquehanna unit 1 230 kV	Active
AF2-268	Orrtanna 13.2 kV	Engineering and Procurement
AF2-271	Pemberton-Sinking Valley 12.47 kV	Engineering and Procurement
AF2-272	Bernville 13.2 kV	Engineering and Procurement
AF2-275	Guilford 12.47 kV	Engineering and Procurement
AF2-276	Guilford 12.47 kV	Active
AF2-277	Richland 12.47 kV	Engineering and Procurement
AF2-278	Halifax 12.47 kV	Engineering and Procurement
AF2-279	Letort 12.47 kV	Engineering and Procurement
AF2-280	Buck 12.47 kV	Engineering and Procurement
AF2-281	Lynnville 13.2 kV	Engineering and Procurement
AF2-282	Edelle 12.47 kV	Engineering and Procurement
AF2-283	Greenfield 12.47 kV	Engineering and Procurement
AF2-284	Watson 12.47 kV	Engineering and Procurement
AF2-285	W. Damascus 12.47 kV	Engineering and Procurement
AF2-286	Shermansdale 12.47 kV	Engineering and Procurement
AF2-287	Green Park 12.47 kV	Engineering and Procurement
AF2-288	Benvenue 12.47 kV	Engineering and Procurement

Queue Number	Project Name	Status
AF2-289	Watson 12.47 kV	Engineering and Procurement
AF2-290	Derry 12.47 kV	Engineering and Procurement
AF2-293	Beech Creek 12.47 kV	Engineering and Procurement
AF2-315	Susquehanna Unit 2 500 kV	Active
AF2-325	Jacktown 12 kV	Active
AF2-378	Cambridge 12 kV	Engineering and Procurement
AF2-379	Princess Anne 25 kV	Engineering and Procurement
AF2-383	Tolna 115 kV	Active
AF2-397	Fork Union-Mt. Eagle 230 kV	Active
AF2-405	East Sayre 34.5 kV III	Active
AF2-406	Sayre 115 kV	Active
AF2-409	Vienna 138 kV	Active
AF2-412	Mainesburg 115 kV	Active
AF2-413	Raritan River 230 kV	Active
AF2-414	Bergen 345 kV	Active
AF2-415	Bergen 138 kV	Active
AF2-416	Bergen 26 kV	Active
AF2-427	Watson 12.47 kV	Engineering and Procurement
AF2-428	West Boyertown 13.2 kV	Engineering and Procurement
AF2-429	South Hamburg 34.5 kV	Engineering and Procurement
AF2-430	Moselem 13.2 kV	Engineering and Procurement
AF2-431	Baldy 13.2 kV	Engineering and Procurement
AF2-432	University 12.47 kV	Engineering and Procurement
AG1-000A	N/A	N/A
AG1-000B	N/A	N/A
AG1-009	Hopewell-Surry 230kV	Active
AG1-010	Ladysmith-CT-St. Johns 230 kV	Active
AG1-011	Colonial Trial 230 kV	Active
AG1-013	Ladysmith CT-St. Johns 230 kV	Active
AG1-014	Carson-Rogers Rd 500 kV	Active
AG1-015	Carson-Rogers Rd 500 kV	Active
AG1-019	Arnold's Corner-Dahlgren 230 kV	Active
AG1-028	Suffolk-Holland 115 kV	Active
AG1-050	Milton 69 kV	Active
AG1-052	Zionsview-Middletown 115 kV II	Active
AG1-053	Jackson-Three Mile Island 230 kV III	Active
AG1-057	Harmony Village 230 kV	Active
AG1-060	Eldred 69 kV	Active
AG1-063	Fairhaven 13,8 kV	Active
AG1-064	Plaza 34.5 kV	Engineering and Procurement
AG1-065	Plaza 34.5 kV	Engineering and Procurement
AG1-072	Hillsboro-Steele 138 kV II	Active
AG1-087	Milford-Cartanza 230 kV	Active
AG1-088	Carll's Corner-Sherman Ave 69 kV	Active
AG1-102	White Marsh 34.5 kV	Active
AG1-103	Clayton-Williamstown 69 kV	Active
AG1-104	Waugh Chapel 230 kV	Active
AG1-108	Larrabee 230 kV	Active
AG1-110	Silver Lake 69 kV	Active
AG1-115	Buxmont 69 kV	Active
AG1-116	Newport-South Millville 69 kV	Active
AG1-117	Churchtown-Upper Pittsgrove 138 kV	Active

Queue Number	Project Name	Status
AG1-130	Burlington 26 kV	Active
AG1-143	Gainesville-Loudoun 230 kV	Active
AG1-148	McCarter 26.4 kV	Active
AG1-149	Kingston 12 kV II	Active
AG1-150	Wattsville 69 kV II	Active
AG1-152	Remington CT 230 kV	Active
AG1-153	Heritage 500 kV	Active
AG1-154	Ladysmith CT 230 kV	Active
AG1-160	Rogers Road 500 kV	Active
AG1-180	Brunswick-Gasburg 69 kV	Active
AG1-184	Carson-Suffolk 500 kV	Active
AG1-185	Pamplin-Chase City 115 kV	Active
AG1-187	St. Johns DP-REC 115 kV	Active
AG1-210	Northern Neck 34.5 kV	Active
AG1-213	St Johns 13.2 kV	Active
AG1-215	Fort Pickett 13.2 kV	Active
AG1-221	Poland Rd-Runway DP 230 kV	Active
AG1-248	York Storage 115 kV	Active
AG1-254	Salem-Woodstown 69 kV	Active
AG1-255	Churchtown-Orchard 230 kV	Active
AG1-256	Northern Neck 230 kV	Active
AG1-262	Lower Mount Bethel 230 kV	Active
AG1-263	Gloucester 230 kV	Active
AG1-267	Martins Creek 69 kV	Active
AG1-268	Essex 230 kV	Active
AG1-272	Twitty's Creek 115 kV	Active
AG1-273	Twitty's Creek 115 kV	Active
AG1-274	Twitty's Creek 115 kV	Active
AG1-277	Salem-Beacon Power 69 kV	Active
AG1-278	Salem-Beacon Power 69 kV	Active
AG1-279	Salem-Beacon Power 69 kV	Active
AG1-289	Lake of the Woods DP-Wilderness DP 115 kV	Active
AG1-290	Wagner 115 kV	Active
AG1-318	Ocean Bay 12 kV	Active
AG1-322	Birchwood 230 kV	Active
AG1-330	Beavertown 12.47 kV	Active
AG1-332	Oxford 13.2 kV	Withdrawn
AG1-333	Lake Como-Pine Mills 12.47 kV	Withdrawn
AG1-336	Hunter 12.47 kV	Active
AG1-337	Elizabethville 12.47 kV	Active
AG1-342	Dryburg 115 kV	Active
AG1-343	Boykins-Murphy 115 kV	Active
AG1-347	Briery DP-Clover 230 kV	Active
AG1-359	Fentress 230 kV	Active
AG1-363	Black Oak-Hatfield 500 kV	Active
AG1-364	Deep Creek 115 kV	Active
AG1-383	Hickory 34.5 kV	Active
AG1-384	Twitty's Creek 115 kV	Active
AG1-397	Walston 12 kV	Active
AG1-412	Ladysmith CT-Mine Road 230 kV	Active
AG1-416	Sleepy Hollow 138 kV	Active
AG1-426	Bremo-Scottsville 138 kV	Active

Queue Number	Project Name	Status
AG1-431A	Mackeys 230 kV	Active
AG1-442	Cashie-Earleys 230 kV	Active
AG1-443	Cashie-Earleys 230 kV	Active
AG1-444	Chinquapin 230 kV	Active
AG1-445	Palmer Spring 115 kV	Active
AG1-446	Palmer Springs 115 kV	Active
AG1-449	Rawlings-Carson 500 kV	Active
AG1-450	Airey-Vienna 69 kV II	Active
AG1-451	Curdsville DP-Willis Mt. 115 kV	Active
AG1-464	Harrington 69 kV	Active
AG1-465	North Hanover-Gitts Run 115 kV	Active
AG1-470	Ringgold 138 kV	Active
AG1-473	Shingletown-Lewistown 230 kV	Active
AG1-480	Shawnee 34.5 kV	Active
AG1-484	Mountain 115 kV	Active
AG1-486	Orrtanna 115 kV	Active
AG1-487	Gilbert 230 kV	Active
AG1-497	Cartanza 230 kV	Active
AG1-510	Kittatinny-Blairstown 34.5 kV	Active
AG1-511	Kittatinny 230 kV	Active
AG1-515	Guilford 138 kV	Active
AG1-518	Suffolk 230 kV	Active
AG1-534	Evergreen Mills 230 kV	Active
AG1-536	Garner-Northern Neck 115 kV	Active
AG1-538	Remington-Gordonsville 230 kV	Active
AG1-541	St. Johns 115 kV	Active
AG1-544	Bakers Pond DP 115 kV	Active
AG1-545	W. Quaker Rd-Disputanta 34.5 kV	Active
AG1-560	Shade Gap-Roxbury 115 kV II	Active
AG1-561	Roxbury-Greene 138 kV II	Active
V3-051	Letort	In Service

12.8 Contingency Descriptions

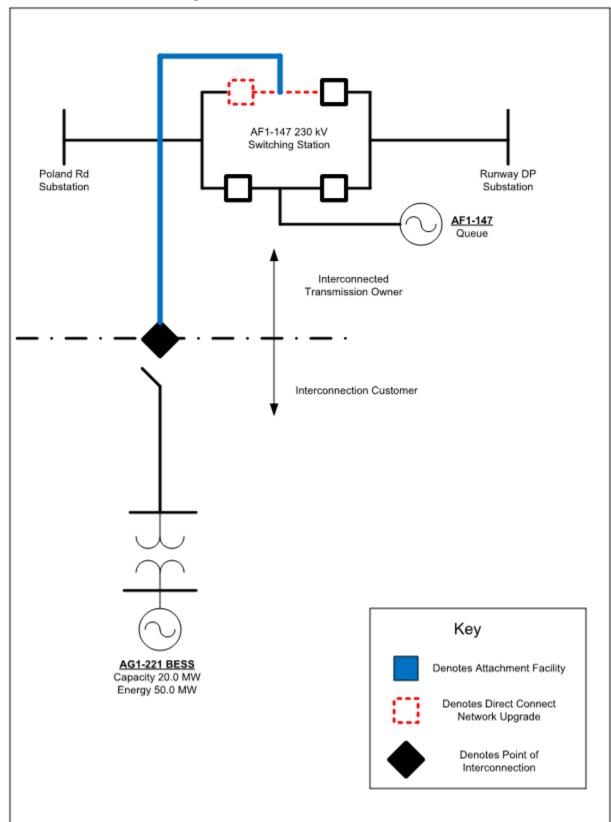
Contingency Name	Contingency Definition
AP-P1-2-PE-500-407T	CONTINGENCY 'AP-P1-2-PE-500-407T' /* 01DOUBS 500 8GOOSE CREEK 500 1 DISCONNECT BRANCH FROM BUS 235105 TO BUS 314939 CKT 1 /* 01DOUBS 500 8GOOSE CREEK500 END

13 Short Circuit Analysis

No violations were identified

13.1 System Reinforcements - Short Circuit

None required


14 Stability and Reactive Power

To be determined in the Facilities Study Phase.

15 Affected Systems

Not Required

16 Attachment 1: One Line Diagram

