

A Brief History of Regulation Signals at PJM

Scott Benner Markets Coordination June 9th, 2015

- Zonal Regulation Signals A & B
- Spinning & Regulation Market (SPREGO)
- Market Area Regulation Signal A
- Ancillary Service Area Regulation Signal A
- Dynamic Regulation Signal D
- RTO Regulation Signal A
- **Performance Based Regulation** Market (ASO)

- In the 1990s, Regulation was a Cost of Service managed Zonally by LSEs (by Transmission Zone)
 - Load zones had an obligation to purchase regulation at a requirement equal to 1.1% of on/off peak load forecast MW
 - Generation provides the service at cost, based on lost opportunity (hydro) or heat rate degradation (steam) and variable costs
 - Utilities managed fleet-based regulation from their own resource pools, or created bilateral contracts to exchange MW between zones

Regulation Signals A & B

- In 1998, the Siemens EMS (C1) generated two signal shapes
 - Regulation A as a function of total ACE
 - Lower gain with longer time constant (slow convergence)
 - Tuned for slower ramping Steam generation
 - Regulation B as a function of total ACE
 - Higher gain with shorter time constant (fast convergence)
 - Tuned for faster ramping Hydro generation
 - CTs were too uneconomical to provide regulation service
 - "Islanding" model supported regulation signals on control zones

Ancillary Service Market

- In 2001, PJM implemented the Ancillary Service Market
 - Co-optimized Spinning & Regulation
 - Single regulation product meant all regulation must be offered and cleared as substitutable MW
 - Regulation B was depreciated, and merged into Regulation A
- Regulating resources bid into the market to meet requirement
 - Self-scheduled resources meet LSE obligations at zero cost
 - Pool-scheduled resources are cleared by PJM in least-cost merit order to meet remaining requirement

PJM and the concept of RTO

- In 2002, AP joined PJM, and became PJM RTO
 - MidAtlantic followed MAAC rules, AP followed ECAR rules
 - PJM managed separate Control Zone Requirements, with nontransferrable resources
 - Regulation A as a function of control zone pseudo-ACE
 - Market area ties (actual) vs generation transfer (schedule), plus share of frequency bias, mathematically equivalent to RTO ACE
- In 2004 & 2005, the concept extended to ComEd, AEP, Dayton, Duquesne and Dominion market integration areas
 - RTO was split into two Regulation Zones: West & MidAtl

- In Aug 2005, the Regulation Markets merged into a single RTO Regulation Zone, with requirement of 1% of on/off peak load forecast
 - All resources in the RTO were interchangeable
 - Regulation A as a function of **control zone pseudo-ACE**
- By end of 2006, Demand Response became eligible to provide ancillary services, but no activity in the market at this time

- In 2009, PJM was approached by AES to collaborate on a new bulk electric energy storage system, a. k. a. the battery
 - Began feeding "Regulation B"—like signal to the device, with dubious results . . .
 - PJM uses regulation to absorb large changes in ACE, and does not see a problem with "utilizing" the service by sending full raises and lowers
 - Extended periods of full raise and lower lead to over-charge or depletion of batteries following the normal signal, so . . .

Regulation D, for Dynamic

- Regulation D was developed specifically for energy storage devices with limited storage capabilities
 - High gain and short time constants meant that the signal converged very fast on ACE correcting signal, but . . .
 - Energy Neutrality integration term meant that the signal will converge back to zero after a period of time, targeting 5 minutes
 - 95% of the time, the controller converges in < 15 minutes
- Designed so that batteries can provide more signal correcting "work" (MW) in short-term with less storage needs (MWh)
 - Lithium Ion batteries typically operate to a 4:1 MW : MWh ratio

Jpjm

- By 2011, PJM had resources following different signal shapes, with varying performance, all clearing equivalently in the market
 - PJM forms RPSTF to investigate market rule changes
 - Commissions KEMA study to analyze trade-offs for A/D signals
- FERC Order 755, Performance Based Regulation, changes this
 - Measure performance with a standard metric
 - Rank the clearing based on performance and benefit (eff. MW)
 - Shortage Pricing implementations co-optimizes price with LOC

Back to RTO Regulation Signal

- In Apr 2012, during Performance Based Regulation (PBR) development, zonal signals were no longer needed
 - Affected ability to aggregate resources across zones
 - Mileage concept based on movement of regulation signal
 - Regulation Signal A as a function of **total ACE**
- On Oct 1, 2012, PJM implemented PBR and began reducing the regulation requirement
 - 0.78% of on/off peak load forecast, then 0.73%, then 0.7% by Dec
 - In Nov 2013, implemented fixed on/off peak requirements

- Performance Based Regulation had some caveats . . .
 - Unit-specific Benefit Factor used for Clearing
 - Unit-specific Benefit Factor used for Pricing
 - Mileage Ratio used for Settlements
- Benefit Factor Curve was derived from KEMA analysis in 2011, using seasonal-representative operating weeks
 - Implemented as a fixed curve & not revisited since 2012

Regulation D in Operations

- In 2014, Hydroelectric began to qualify for Regulation D
 - Always had been able to provide more than Regulation A
 - Regulation D payment structure incentivizes participation
- By Summer 2014, PJM Dispatch began noticing deviations
 Regulation D signal moving to zero when ACE deviation persists
- By Fall 2014, PJM Real-time Market Operations observed that in some hours, more than 70% of the requirement was composed of Regulation D, well beyond the original benefit factor design

Regulation in Operations

- How saturated is Regulation D (from Jun2014 Jun2015)?
 - 26.4% of hours have greater than 42% ratio Reg D / Requirement
 - 0.05% of hours have greater than 70% ratio Reg D / Requirement
- In those hours, if ACE is at extremes, Regulation D logic brings the signal back to zero, which goes against ACE correction
- Manual intervention by Dispatch to force signal to specific utilization % (typically back to full raise)
 - Forcing Regulation D to extreme depletes batteries, lowering scores